Students explore methods for dividing a whole number by a fraction.Key ConceptsIn …
Students explore methods for dividing a whole number by a fraction.Key ConceptsIn earlier grades, students learned to think of a whole number division problem, such as 8 ÷ 4, in terms of two types of equal groups.Divisor as the Number of Groups Divide 8 into 4 equal groups and find the size of each group.Divisor as the Group Size Divide 8 into groups of 4 and find the number of groups.To divide a fraction by a whole number in Lesson 2, students used the first interpretation. For example, to find 89 ÷ 4, they divided 8 ninths into 4 equal groups and found that there were 2 ninths in each group.To divide a whole number by a fraction, the second interpretation is most helpful. For example, to find 3 ÷ 34, we find the number of groups of 3 fourths in 3 wholes. The diagram in the Opening shows that there are 4 groups, so 3 ÷ 34 = 4.Just as with whole number division, the quotient when a whole number is divided by a fraction is not always a whole number. Below is a model for 2 ÷ 35. The model shows that there are 3 groups of 3 fifths in 2 wholes plus 13 of another group (13 of a group of 3 fifths is 1 fifth). Therefore, 2 ÷ 35 = 313. Notice that once we have divided the 2 wholes into fifths, we are finding the number of groups of 3 fifths in 10 fifths. This is simply 10 ÷ 3.These models can help explain that the “multiply by the reciprocal” method of dividing a whole number by a fraction works. To find 2 ÷ 35, we can multiply 2 by 5 to find the total number of fifths in 2 and then divide the result (10) by 3 to find the number of groups of 3 of these fifths in 2. So, 2÷35=2×53=2×53.ELL: Encourage students to verbalize their explanations. To help students gain confidence and increase their understanding, allow those that share the same language of origin to speak in small groups using their prefered language.Goals and Learning ObjectivesUse models and other methods to divide a whole number by a fraction.
Rate Type of Unit: Concept Prior Knowledge Students should be able to: …
Rate
Type of Unit: Concept
Prior Knowledge
Students should be able to:
Solve problems involving all four operations with rational numbers. Understand quantity as a number used with a unit of measurement. Solve problems involving quantities such as distances, intervals of time, liquid volumes, masses of objects, and money, and with the units of measurement for these quantities. Understand that a ratio is a comparison of two quantities. Write ratios for problem situations. Make and interpret tables, graphs, and diagrams. Write and solve equations to represent problem situations.
Lesson Flow
In this unit, students will explore the concept of rate in a variety of contexts: beats per minute, unit prices, fuel efficiency of a car, population density, speed, and conversion factors. Students will write and refine their own definition for rate and then use it to recognize rates in different situations. Students will learn that every rate is paired with an inverse rate that is a measure of the same relationship. Students will figure out the logic of how units are used with rates. Then students will represent quantitative relationships involving rates, using tables, graphs, double number lines, and formulas, and they will see how to create one such representation when given another.
In this lesson, students focus on the units used with rates. Students …
In this lesson, students focus on the units used with rates. Students are given calculations without units and must determine the correct units to use.Key ConceptsWhen dividing quantity A by quantity B to find a rate, the unit of the quotient is expressed in the form A per B.When multiplying a B quantity by an A per B rate, you get an A quantity.Some rates, while mathematically correct, are physically impossible in the real world.Goals and Learning ObjectivesUnderstand the units that result from rate calculations.
Four full-year digital course, built from the ground up and fully-aligned to …
Four full-year digital course, built from the ground up and fully-aligned to the Common Core State Standards, for 7th grade Mathematics. Created using research-based approaches to teaching and learning, the Open Access Common Core Course for Mathematics is designed with student-centered learning in mind, including activities for students to develop valuable 21st century skills and academic mindset.
Working With Rational Numbers Type of Unit: Concept Prior Knowledge Students should …
Working With Rational Numbers
Type of Unit: Concept
Prior Knowledge
Students should be able to:
Compare and order positive and negative numbers and place them on a number line. Understand the concepts of opposites absolute value.
Lesson Flow
The unit begins with students using a balloon model to informally explore adding and subtracting integers. With the model, adding or removing heat represents adding or subtracting positive integers, and adding or removing weight represents adding or subtracting negative integers.
Students then move from the balloon model to a number line model for adding and subtracting integers, eventually extending the addition and subtraction rules from integers to all rational numbers. Number lines and multiplication patterns are used to find products of rational numbers. The relationship between multiplication and division is used to understand how to divide rational numbers. Properties of addition are briefly reviewed, then used to prove rules for addition, subtraction, multiplication, and division.
This unit includes problems with real-world contexts, formative assessment lessons, and Gallery problems.
Students critique and improve their work on the Self Check. They then …
Students critique and improve their work on the Self Check. They then extend their knowledge with additional problems.Students solve problems that require them to apply their knowledge of multiplying and dividing positive and negative numbers. Students will then take a quiz.Key ConceptsTo solve the problems in the Self Check, students must apply their knowledge of multiplication and division of positive and negative numbers learned throughout the unit.Goals and Learning ObjectivesUse knowledge of multiplication and division of positive and negative numbers to solve problems.
This lesson unit is intended to help you assess how well students …
This lesson unit is intended to help you assess how well students are able to: Calculate the mean, median, mode, and range from a frequency chart; and to use a frequency chart to describe a possible data set, given information on the mean, median, mode, and range.
Students will determine the unknown factor in a division equation in tihs …
Students will determine the unknown factor in a division equation in tihs two-player game. They will take turns choosing a number card 1-10 until they find a factor that completes the unknown of the division equation. This activity can be used during small group instruction and later moved into a center activity to assist students master division facts. It includes four sets of division cards.
This resource is from Tools 4 NC Teachers. This document is the …
This resource is from Tools 4 NC Teachers. This document is the About the Cluster document created by the authors of the NC2ML Instructional Frameworks. This document should be read prior to teaching this cluster. This document is not remixable since the document has been written by creators of the NC2ML Instructional Frameworks.
This About the Cluster document is written by the authors of the …
This About the Cluster document is written by the authors of the NC2ML Instructional Frameworks. This document should be read to support planning for Cluster 3. It is not remixable since it was written by the authors of the frameworks.
This single player game helps students develop an understanding of the partial …
This single player game helps students develop an understanding of the partial quotient strategy for division. It can also help students develop and understanding of division with and without remainders.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.