Students design and build paper rockets around film canisters, which serve as …
Students design and build paper rockets around film canisters, which serve as engines. An antacid tablet and water are put into each canister, reacting to form carbon dioxide gas, and acting as the pop rocket's propellant. With the lid snapped on, the continuous creation of gas causes pressure to build up until the lid pops off, sending the rocket into the air. The pop rockets demonstrate Newton's third law of motion: for every action, there is an equal and opposite reaction.
Students use potatoes to light an LED clock (or light bulb) as …
Students use potatoes to light an LED clock (or light bulb) as they learn how a battery works in a simple circuit and how chemical energy changes to electrical energy. As they learn more about electrical energy, they better understand the concepts of voltage, current and resistance.
Uncountable times every day with the merest flick of a finger each …
Uncountable times every day with the merest flick of a finger each one of us calls on electricity to do our bidding. What would your life be like without electricity? Students begin learning about electricity with an introduction to the most basic unit in ordinary matter, the atom. Once the components of an atom are addressed and understood, students move into the world of electricity. First, they explore static electricity, followed by basic current electricity concepts such as voltage, resistance and open/closed circuits. Next, they learn about that wonderful can full of chemicals the battery. Students may get a "charge" as they discover the difference between a conductor and an insulator. The unit concludes with lessons investigating simple circuits arranged "in series" and "in parallel," including the benefits and unique features associated with each. Through numerous hands-on activities, students move cereal and foam using charged combs, use balloons to explore electricity and charge polarization, build and use electroscopes to evaluate objects' charge intensities, construct simple switches using various materials in circuits that light bulbs, build and use simple conductivity testers to evaluate materials and solutions, build and experiment with simple series and parallel circuits, design and build their own series circuit flashlight, and draw circuits using symbols.
This article from Beyond Weather and the Water Cycle provides ideas on …
This article from Beyond Weather and the Water Cycle provides ideas on how school librarians can work with elementary teachers to teach about the Sun's impact on weather and climate. The author introduces the Standards for the 21st Century Learner, developed by the American Association of School Librarians. The author focuses on Standard 1, which calls for students to inquire, think critically, and gain knowledge through developing and refining questions, investigating answers, seeking divergent perspectives in information, and assessing whether the information found answers the questions posed. The free, online magazine draws its themes from the Seven Essential Principles of Climate Literacy, with each issue focusing on one of the seven principles.
In this hands-on activity rolling a ball down an incline and having …
In this hands-on activity rolling a ball down an incline and having it collide into a cup the concepts of mechanical energy, work and power, momentum, and friction are all demonstrated. During the activity, students take measurements and use equations that describe these energy of motion concepts to calculate unknown variables, and review the relationships between these concepts.
Students are introduced to renewable energy, including its relevance and importance to …
Students are introduced to renewable energy, including its relevance and importance to our current and future world. They learn the mechanics of how wind turbines convert wind energy into electrical energy and the concepts of lift and drag. Then they apply real-world technical tools and techniques to design their own aerodynamic wind turbines that efficiently harvest the most wind energy. Specifically, teams each design a wind turbine propeller attachment. They sketch rotor blade ideas, create CAD drawings (using Google SketchUp) of the best designs and make them come to life by fabricating them on a 3D printer. They attach, test and analyze different versions and/or configurations using a LEGO wind turbine, fan and an energy meter. At activity end, students discuss their results and the most successful designs, the aerodynamics characteristics affecting a wind turbine's ability to efficiently harvest wind energy, and ideas for improvement. The activity is suitable for a class/team competition. Example 3D rotor blade designs are provided.
Students use real-world data to calculate the potential for solar and wind …
Students use real-world data to calculate the potential for solar and wind energy generation at their school location. After examining maps and analyzing data from the online Renewable Energy Living Lab, they write recommendations as to the optimal form of renewable energy the school should pursue.
Students use real-world data to evaluate whether solar power is a viable …
Students use real-world data to evaluate whether solar power is a viable energy alternative for several cities in different parts of the U.S. Working in small groups, they examine maps and make calculations using NREL/US DOE data from the online Renewable Energy Living Lab. In this exercise, students analyze cost and availability for solar power, and come to conclusions about whether solar power is a good solution for four different locations.
Students learn how and why engineers design satellites to benefit life on …
Students learn how and why engineers design satellites to benefit life on Earth, as well as explore motion, rockets and rocket motion. Through six lessons and 10 associated hands-on activities, students discover that the motion of all objects everything from the flight of a rocket to the movement of a canoe is governed by Newton's three laws of motion. This unit introduces students to the challenges of getting into space for the purpose of exploration. The ideas of thrust, weight and control are explored, helping students to fully understand what goes into the design of rockets and the value of understanding these scientific concepts. After learning how and why the experts make specific engineering choices, students also learn about the iterative engineering design process as they design and construct their own model rockets. Then students explore triangulation, a concept that is fundamental to the navigation of satellites and global positioning systems designed by engineers; by investigating these technologies, they learn how people can determine their positions and the locations of others.
This resource is a lesson and project to guide students through using …
This resource is a lesson and project to guide students through using a roller coaster simulation to explain how energy can be transformed from one form to another (energy transformation). The lesson, resources, project, and energy quiz can be accessed and modified through a Google Slides presentation (http://bit.ly/RollerCoasterEnergyTransformations)
In this series of quick hands-on activities, students will demonstrate that heat …
In this series of quick hands-on activities, students will demonstrate that heat is produced when objects are rubbed together. As assessment, students will identify and draw examples that illustrate this concept.
In this activity, students are introduced to the relationship between food and …
In this activity, students are introduced to the relationship between food and energy. Students will observe what happens when yeast, a single-celled fungus, is provided with food (table sugar).
The students will be able to identify questions and concepts that guide …
The students will be able to identify questions and concepts that guide scientific investigations, recognize and analyze alternative explanations and models by the end of this activity.
Students learn about two types of friction static and kinetic and the …
Students learn about two types of friction static and kinetic and the equation that governs them. They also measure the coefficient of static friction experimentally.
Solar power is clean, abundant, and becoming cheaper and more efficient all …
Solar power is clean, abundant, and becoming cheaper and more efficient all the time. Unfortunately, however, the sun isn't always there when you need it?like when it's cloudy, or it's raining, or it's nighttime. In this Science Update, you'll hear about an ambitious plan to get around that problem. Supplemental resources, including a background essay and discussion questions, are also provided.
In this project, students will use knowledge of electricity and electromagnetism to …
In this project, students will use knowledge of electricity and electromagnetism to collaboratively design and test a model of a magnetic recycling sorter. They will evaluate the performance of their models and propose further modifications based on the output of their magnetic device measured in mT using a Vernier probe. They will also physically test their magnets on a model of a conveyor belt containing recyclable items. Students will track their data from both tests, with the ultimate goal of creating the strongest and most effective magnet with given materials. Finally, students will present their findings and proposed final design to peers and community partners involved in the recycling industry. The entire process takes about 6 weeks. The unit is a great fit for standards within energy and engineering & design.
In this activity, students estimate the energy output of the Sun (radiation) …
In this activity, students estimate the energy output of the Sun (radiation) using a simple device and discover how much power sunlight provides to Earth; they learn that the Sun is the main source of energy on Earth. Students also compare the amount of solar radiation emitted at Mercury as to Earth. They also learn that sunlight and the electromagnetic spectrum are the main tools with which we study objects in the Solar System.
Student groups rotate through four stations to examine light energy behavior: refraction, …
Student groups rotate through four stations to examine light energy behavior: refraction, magnification, prisms and polarization. They see how a beam of light is refracted (bent) through various transparent mediums. While learning how a magnifying glass works, students see how the orientation of an image changes with the distance of the lens from its focal point. They also discover how a prism works by refracting light and making rainbows. And, students investigate the polar nature of light using sunglasses and polarized light film.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.