## Description

- Overview:
- Students solve division problems by changing them into multiplication problems. They then use the relationship between multiplication and division to determine the sign when dividing positive and negative numbers in general.Key ConceptsThe rules for determining the sign of a quotient are the same as those for a product: If the two numbers have the same sign, the quotient is positive; if they have different signs, the quotient is negative. This can be seen by rewriting a division problem as a multiplication of the inverse.For example, consider the division problem −27 ÷ 9. Here are two ways to use multiplication to determine the sign of the quotient:The quotient is the value of x in the multiplication problem 9 ⋅ x = −27. Because 9 is positive, the value of x must be negative in order to get the negative product.The division −27 ÷ 9 is equivalent to the multiplication −27 ⋅ 19. Because this is the product of a negative number and a positive number, the result must be negative.Goals and Learning ObjectivesUse the relationship between multiplication and division to solve division problems involving positive and negative numbers.Understand how to determine whether a quotient will be positive or negative.

- Level:
- Middle School
- Grades:
- Grade 7
- Material Type:
- Lesson Plan
- Author:
- Pearson
- Provider:
- Pearson
- Date Added:
- 11/02/2020

- License:
- Creative Commons Attribution Non-Commercial
- Language:
- English
- Media Format:
- Text/HTML

## Standards

## Evaluations

No evaluations yet.

## Comments