Students view a series of coloured images and then record the colours …
Students view a series of coloured images and then record the colours of the afterimages seen by individuals. After discussing the observations, students will attempt to build a hypothesis to explain the observations as related to how the eye responds to electromagnetic waves.
Students will prepare slides in an attempt to capture cells that are …
Students will prepare slides in an attempt to capture cells that are in the process of mitosis. After completing their observations students will calculate the mitotic index.
Students examine the rate of oxygen production by catalase in pureed potato …
Students examine the rate of oxygen production by catalase in pureed potato as the concentration of hydrogen peroxide varies. The oxygen produced in 30 seconds is collected over water. Then the rate of reaction is calculated.
Students plan and carry out a reliable scientific investigation in order to …
Students plan and carry out a reliable scientific investigation in order to find out how different materials affect plant growth and compare methods for estimating plant growth.
Students investigate the reduction of carbon dioxide to carbohydrate. DCPIP, a blue …
Students investigate the reduction of carbon dioxide to carbohydrate. DCPIP, a blue dye, acts as a electron acceptor and becomes colorless when reduced, allowing any reducing agent produced by the chloroplasts to be detected.
The experiment is in two parts. The first part involves boiling some …
The experiment is in two parts. The first part involves boiling some red cabbage in water. In the second part the students test their indicator. Between the two parts the mixture must be allowed to cool. The first part takes about 10 to 15 minutes. The cooling takes about 15 minutes and the testing less than 5 minutes.
Students explore the role of soil microbes in the carbon cycle and …
Students explore the role of soil microbes in the carbon cycle and investigate how quickly different kinds of paper decompose under the action of soil microbes.
Students will culture nitrogen-fixing bacteria from root nodules of leguminous plants. This …
Students will culture nitrogen-fixing bacteria from root nodules of leguminous plants. This will reinforce understanding of the role of bacteria in the nitrogen cycle and explore a common example of symbiosis or mutualism.
Students use a volume of dilute hydrochloric acid that models the volume …
Students use a volume of dilute hydrochloric acid that models the volume and concentration of our stomach contents. They will then add typical doses of a range of over-the-counter antacid preparations - powders, tablets and liquids and monitor the changing pH with either Universal indicator solution or a pH probe. Students will compare the effects of different preparations and discuss the short and long-term consequences of using each medicine.
Students create slides of plant cells. Under a microscope they will make …
Students create slides of plant cells. Under a microscope they will make observations when either distilled water or 5% sodium chloride solution is added to the cells. Osmosis will occus resulting in either turgid or plasmolysed cells.
This lesson is designed to exemplify a model-based inquiry approach to practical …
This lesson is designed to exemplify a model-based inquiry approach to practical work. It is based around a model for human colour perception which describes colour-sensitive receptors (cones) in the retina. Students use their own ideas to make a prediction about the outcomes of an experiment to test colour vision. By gathering evidence of colour perception in the field of view, students build a model in the form of a map to help them understand what is happening on the retina. They then relate their map to the distribution of receptors (cones) in the retina, for different colours of light. They use the collected data to critique both their predicted model and the consensus model.
This lesson is designed to exemplify a model-based inquiry approach to practical …
This lesson is designed to exemplify a model-based inquiry approach to practical work. Iron wool is placed on a simple balance and set alight. Will it gain or lose mass? Students use their own ideas (mental models) to make predictions about the outcome of the experiment. They compare their predictions with their observations, and then use the consensus model to develop an explanation. In this case the consensus model is made up of the equation for the reaction, and particle theory.
This sequence of two lessons is designed to exemplify an argumentation approach …
This sequence of two lessons is designed to exemplify an argumentation approach to practical work, using an analysing and interpreting data framework. Students use primary data about heart rates and breathing rates, alongside secondary data from children and adults, to assess and argue for or against the validity of claims about physical fitness. They consider whether the evidence is sufficient in itself to support the claims, particularly when the sample size is small, or whether more data is needed. They justify their decisions through argumentation.
This lesson is designed to exemplify an argumentation approach to practical work, …
This lesson is designed to exemplify an argumentation approach to practical work, using a predict, observe, explain framework. When burning magnesium is placed into a gas jar of carbon dioxide it is not extinguished but burns more brightly. This is due to the relative positions of magnesium and carbon in the reactivity series. The result surprises many students who know that carbon dioxide puts out fires – and is in many fire extinguishers. This lesson allows students to argue about what they think will happen in the reaction and to draw up competing theories. They then observe the reaction and write an explanation for what they have seen.
This lesson is designed to exemplify an argumentation approach to practical work, …
This lesson is designed to exemplify an argumentation approach to practical work, using a predict-observe-explain framework. Students often think that some materials are intrinsically warm (wood, plastic, wool) while others are intrinsically cold (metals, glass, water). This lesson challenges these ideas by presenting observations which many will find counter-intuitive. Through argumentation, students predict the outcome of an experiment, observe the result, and discuss how scientific ideas about energy transfer can explain what they see.
This lesson sequence is designed to exemplify an argumentation approach to practical …
This lesson sequence is designed to exemplify an argumentation approach to practical work, using a classification framework. In these lessons students see for themselves that it is possible to group chemicals with similar properties – and that there are some chemicals which do not fit easily into a group. Students carry out a practical activity in one lesson and in the next try to group the chemicals according to the results of their investigations. At the end the students are told the four main groups that chemists use to classify chemicals and they try placing the chemicals they have been using into these groups.
This lesson sequence is designed to exemplify a model-based inquiry approach to …
This lesson sequence is designed to exemplify a model-based inquiry approach to practical work in which students evaluate collision theory and rate equations as models for explaining rates of reactions. Understanding the rates of chemical reactions is important for controlling reactions in industry. In this lesson sequence students will evaluate collision theory as a model for predicting rates of reactions. They then collect data to determine the order of the reaction of calcium carbonate and hydrochloric acid, and deduce the rate equation. They use the rate equation to make predictions.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.