Updating search results...

Search Resources

72 Results

View
Selected filters:
  • NC.Math.8.SP.1 - Construct and interpret scatter plots for bivariate measurement data t...
  • NC.Math.8.SP.1 - Construct and interpret scatter plots for bivariate measurement data t...
Create a Safe Bungee Cord for Washy!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the role engineers and mathematicians play in developing the perfect bungee cord length by simulating and experimenting with bungee jumping using washers and rubber bands. Working as if they are engineers for a (hypothetical) amusement park, students are challenged to develop a show-stopping bungee jumping ride that is safe. To do this, they must find the maximum length of the bungee cord that permits jumpers (such as brave Washy!) to get as close to the ground as possible without going "splat"! This requires them to learn about force and displacement and run an experiment. Student teams collect and plot displacement data and calculate the slope, linear equation of the line of best fit and spring constant using Hooke's law. Students make hypotheses, interpret scatter plots looking for correlations, and consider possible sources of error. An activity worksheet, pre/post quizzes and a PowerPoint® presentation are included.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Marc Frank
Date Added:
05/09/2019
Daylighting Design
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore the many different ways that engineers provide natural lighting to interior spaces. They analyze various methods of daylighting by constructing model houses from foam core board and simulating the sun with a desk lamp. Teams design a daylighting system for their model houses based on their observations and calculations of the optimal use of available sunlight to their structure.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Landon B. Gennetten
Lauren Cooper
Malinda Schaefer Zarske
Date Added:
10/14/2015
Design a Carrying Device for People Using Crutches
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are given a biomedical engineering challenge, which they solve while following the steps of the engineering design process. In a design lab environment, student groups design, create and test prototype devices that help people using crutches carry things, such as books and school supplies. The assistive devices must meet a list of constraints, including a device weight limit and minimum load capacity. Students use various hand and power tools to fabricate the devices. They test the practicality of their designs by loading them with objects and then using the modified crutches in the school hallways and classrooms.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Kristen Billiar
Terri Camesano
Thomas Oliva
Date Added:
09/18/2014
Design a Parachute
Read the Fine Print
Educational Use
Rating
0.0 stars

After a discussion about what a parachute is and how it works, students create parachutes using different materials that they think will work best. They test their designs, and then contribute to a class discussion (and possible journal writing) to report which paper materials worked best.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Digest Your Food!
Read the Fine Print
Educational Use
Rating
0.0 stars

In a multi-week experiment, student teams gather biogas data from the mini-anaerobic digesters that they build to break down different types of food waste with microbes. Using plastic soda bottles for the mini-anaerobic digesters and gas measurement devices, they compare methane gas production from decomposing hot dogs, diced vs. whole. They monitor and measure the gas production, then graph and analyze the collected data. Students learn how anaerobic digestion can be used to biorecycle waste (food, poop or yard waste) into valuable resources (nutrients, biogas, energy).

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Caryssa Joustra
Daniel Yeh
Emanuel Burch
George Dick
Herby Jean
Ivy Drexler
Jorge Calabria
Lyudmila Haralampieva
Matthew Woodham
Onur Ozcan
Robert Bair
Stephanie Quintero
Date Added:
09/18/2014
Do better movies make the most money? – Yummy Math
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

Students will explore data and create a scatter plot to determine if there is a correlation between the numbers of votes a movie received for best film and the amount of money the movie made at theaters.

Subject:
Mathematics
Material Type:
Activity/Lab
Author:
YummyMath
Date Added:
08/11/2019
Does Your Chewing Gum Lose Its Sweetness?
Read the Fine Print
Educational Use
Rating
0.0 stars

In the first part of the activity, each student chews a piece of gum until it loses its sweetness, and then leaves the gum to dry for several days before weighing it to determine the amount of mass lost. This mass corresponds to the amount of sugar in the gum, and can be compared to the amount stated on the package label. In the second part of the activity, students work in groups to design and conduct new experiments based on questions of their own choosing. These questions arise naturally from observations during the first experiment, and from students' own experiences with and knowledge of the many varieties of chewing and bubble gums available.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
10/14/2015
Don't Crack Humpty
Read the Fine Print
Educational Use
Rating
0.0 stars

Student groups are provided with a generic car base on which to design a device/enclosure to protect an egg on or in the car as it rolls down a ramp at increasing slopes. During this in-depth physics/science/technology activity, student teams design, build and test their creations to meet the design challenge, and are expected to perform basic mathematical calculations using collected data, including a summative cost to benefit ratio.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Justin Riley
Ryan St. Gelais
Scott Beaurivage
Date Added:
09/18/2014
Earth Impact
Read the Fine Print
Educational Use
Rating
0.0 stars

This activity poses the question: What would happen if a meteor or comet impacted Earth? Students simulate an impact in a container of sand using various-sized rocks, all while measuring, recording and graphing results and conclusions. Then students brainstorm ways to prevent an object from hitting the Earth.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Kay
Janet Yowell
Karen King
Date Added:
10/14/2015
Energy Perspectives
Read the Fine Print
Educational Use
Rating
0.0 stars

Students utilize data tables culled from the US DOE Energy Information Agency to create graphs that illustrate what types of energy we use and how we use it. An MS Excel workbook with several spreadsheets of data is provided. Students pick (or the teacher assigns) one of the data tables from which students create plots and interpret the information provided. Student groups share with the class their interpretations and new perspectives on energy resources and use.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jan DeWaters
Susan Powers
Date Added:
09/18/2014
Famous People
Read the Fine Print
Rating
0.0 stars

Students produce a scatter plot that compares the estimated ages to actual ages od famous people. They will also determine the equation of a line that represents estimates that are 100% accurate and what it means for a point to fall above or below the line.

Subject:
Mathematics
Material Type:
Lesson Plan
Provider:
The Florida Center for Instructional Technology
Author:
The Florida Center for Instructional Technology
Date Added:
02/26/2019
Graphing nonlinear functions: Grade 8 Mathematics Module 6, Topic C, Lesson 12
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this lesson, students give verbal descriptions of how y changes as x changes given the graph of a nonlinear function. Students draw nonlinear functions that are consistent with a verbal description of a nonlinear relationship.

Subject:
Mathematics
Material Type:
Lesson Plan
Provider:
EngageNY
Date Added:
02/23/2017
Graphing the Rainbow
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to different ways of displaying visual spectra, including colored "barcode" spectra, like those produced by a diffraction grating, and line plots displaying intensity versus color, or wavelength. Students learn that a diffraction grating acts like a prism, bending light into its component colors.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
Hearing: How Do Our Ears Work?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the anatomy of the ear and how the ears work as a sound sensor. Ear anatomy parts and structures are explained in detail, as well as how sound is transmitted mechanically and then electrically through them to the brain. Students use LEGO® robots with sound sensors to measure sound intensities, learning how the NXT brick (computer) converts the intensity of sound measured by the sensor input into a number that transmits to a screen. They build on their experiences from the previous activities and establish a rich understanding of the sound sensor and its relationship to the TaskBot's computer.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Charlie Franklin
Marianne Catanho
Sachin Nair
Satish Nair
Date Added:
09/18/2014
Heavy Helicopters
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about weight and drag forces by making paper helicopters and measuring how adding more weight affects the time it takes for the helicopters to fall to the ground.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Heavner
Denise Carlson
Malinda Schaefer Zarske
Sabre Duren
Date Added:
10/14/2015
Hot Cans and Cold Cans
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students apply the concepts of conduction, convection and radiation as they work in teams to solve two challenges. One problem requires that they maintain the warm temperature of one soda can filled with water at approximately human body temperature, and the other problem is to cause an identical soda can of warm water to cool as much as possible during the same 30-minute time period. Students design their engineering solutions using only common everyday materials, and test their devices by recording the water temperatures in their two soda cans every five minutes.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
How Fast Can a Carrot Rot?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students conduct experiments to determine what environmental factors favor decomposition by soil microbes. They use chunks of carrots for the materials to be decomposed, and their experiments are carried out in plastic bags filled with dirt. Every few days students remove the carrots from the dirt and weigh them. Depending on the experimental conditions, after a few weeks most of the carrots have decomposed completely.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
10/14/2015
Hydraulic Arm Challenge
Read the Fine Print
Educational Use
Rating
0.0 stars

Students design and build a mechanical arm that lifts and moves an empty 12-ounce soda can using hydraulics for power. Small design teams (1-2 students each) design and build a single axis for use in the completed mechanical arm. One team designs and builds the grasping hand, another team the lifting arm, and a third team the rotation base. The three groups must work to communicate effectively through written and verbal communication and sketches.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Elissa Milto
Eric Chilton
Karen Carpenito
Date Added:
09/18/2014