In this assessment students will look at how someone else solved an …
In this assessment students will look at how someone else solved an addition problem. They will problem solve to decide whether that is the only way to solve the problem. A rubric and an assessment task sheet are provided.
The purpose of this task is to help students articulate their addition …
The purpose of this task is to help students articulate their addition strategies and would be most appropriately used once students have a solid understanding of coin values.
Jet Ski Addition is an educational multi-player racing game for kids to …
Jet Ski Addition is an educational multi-player racing game for kids to practice addition. How quickly the student correctly answers the addition problems determines how quickly the jet ski will go. The student with the fastest rate of correct answers will win the race. Hits and misses are recorded and displayed at the end of the game, along with the student's rate. 1-4 players can play at once.
This task requires students to study the make-a-ten strategy that they should …
This task requires students to study the make-a-ten strategy that they should already know and use intuitively. In this strategy, knowledge of which sums make a ten, together with some of the properties of addition and subtraction, are used to evaluate sums which are larger than 10.
This task encourages students to brainstorm and share the different strategies they …
This task encourages students to brainstorm and share the different strategies they can use to solve the problem. The purpose of this task is to help enhance students' ability to fluently add by assisting them in finding the most effective strategies to use when adding.
Marble Drop Addition is an arcade-style educational game for kids to practice …
Marble Drop Addition is an arcade-style educational game for kids to practice addition. To play the game kids must collect numbered marbles that add up to the target number shown at the top of the screen. Players will learn that there are often many different combinations of numbers that add up to the target number. Make as many target numbers as possible before the time runs out!
This is a fun interactive which helps students practice adding. Students are …
This is a fun interactive which helps students practice adding. Students are given a number sentence and 3 answer choices. There is a work space below the number sentence where students can drag marbles to help them find the correct answer.
This task provides three types of comparison problems: Those with an unknown …
This task provides three types of comparison problems: Those with an unknown difference and two known numbers; those with a known difference and a bigger unknown number; and those with a known difference and smaller unknown number. Students may solve each type using addition or subtraction, although the language in specific problems tends to favor one approach over another.
Four full-year digital course, built from the ground up and fully-aligned to …
Four full-year digital course, built from the ground up and fully-aligned to the Common Core State Standards, for 7th grade Mathematics. Created using research-based approaches to teaching and learning, the Open Access Common Core Course for Mathematics is designed with student-centered learning in mind, including activities for students to develop valuable 21st century skills and academic mindset.
Working With Rational Numbers Type of Unit: Concept Prior Knowledge Students should …
Working With Rational Numbers
Type of Unit: Concept
Prior Knowledge
Students should be able to:
Compare and order positive and negative numbers and place them on a number line. Understand the concepts of opposites absolute value.
Lesson Flow
The unit begins with students using a balloon model to informally explore adding and subtracting integers. With the model, adding or removing heat represents adding or subtracting positive integers, and adding or removing weight represents adding or subtracting negative integers.
Students then move from the balloon model to a number line model for adding and subtracting integers, eventually extending the addition and subtraction rules from integers to all rational numbers. Number lines and multiplication patterns are used to find products of rational numbers. The relationship between multiplication and division is used to understand how to divide rational numbers. Properties of addition are briefly reviewed, then used to prove rules for addition, subtraction, multiplication, and division.
This unit includes problems with real-world contexts, formative assessment lessons, and Gallery problems.
Students review the properties of addition and write an example for each. …
Students review the properties of addition and write an example for each. Then they apply the properties to simplify numerical expressions.Key ConceptsThe properties of addition:Commutative property of addition: Changing the order of addends does not change the sum. For any numbers a and b, a + b = b + a.Associative property of addition: Changing the grouping of addends does not change the sum. For any numbers a, b, and c, (a + b) + c = a + (b + c).Additive identity property of 0: The sum of 0 and any number is that number. For any number a, a + 0 = 0 + a = a.Existence of additive inverses: The sum of any number and its additive inverse (opposite) is 0. For any number a, a + (−a) = (−a) + a = 0.These properties allow us to manipulate expressions to make them easier to work with. For example, the associative property of addition tells us that we can regroup the expression (311+49)+59 as 311+(49 +59), making it much easier to simplify.Students must be careful to apply the commutative and associative properties only to addition expressions. For example, we cannot switch the −7 and 8 in the expression −7 − 8 to get 8 − (−7). However, if we rewrite −7 − 8 as the addition expression −7 + (−8), we can swap the addends to get −8 + (−7).Goals and Learning ObjectivesUnderstand the properties of addition.Apply the properties of addition to simplify numerical expressions.
Students critique and improve their work on the Self Check, then work …
Students critique and improve their work on the Self Check, then work on more addition and subtraction problems.Students solve problems that require them to apply their knowledge of adding and subtracting positive and negative numbers.Key ConceptsTo solve the problems in this lesson, students use their knowledge of addition and subtraction with positive and negative numbers.Goals and Learning ObjectivesUse knowledge of addition and subtraction with positive and negative numbers to write problems that meet given criteria.Assess and critique methods for subtracting negative numbers.Find values of variables that satisfy given inequalities.
Students use the distributive property to rewrite and solve multiplication problems. Then …
Students use the distributive property to rewrite and solve multiplication problems. Then they apply addition and multiplication properties to simplify numerical expressions.Key ConceptsThe distributive property is stated in terms of addition: a(b + c) = ab + ac, for all numbers a, b, and c. However, it can be extended to subtraction as well: a(b − c) = ab − ac, for all numbers a, b, and c. Here is a proof. (We have combined some steps.)a(b − c)Original expression= a(b + (−c))Subtracting is adding the opposite.= a(b) + a(−c)Apply the distributive property.= ab + a(−1 ⋅ c)Apply the property of multiplication by −1.= ab + −1(ac)Apply the associative and commutative properties of multiplication.= ab + −(ac)Apply the property of multiplication by −1.= ab − acAdd the opposite is subtracting.We can use the distributive property to make some multiplication problems easier to solve. For example, by rewriting $1.85 as $2.00 − $0.15 and applying the distributive property, we can change 6($1.85) to a problem that is easy to solve mentally.6($1.85)=6($2−$0.15)=6($2) − 6($0.15)=$12 − $0.90=$11.10One common error students make when simplifying expressions is to simply remove the parentheses when a sum or difference is subtracted. For example, students may rewrite 10 − (6 + 9) as 10 − 6 + 9. In fact, 10 − (6 + 9) = 10 − 6 − 9. To see why, remember that that subtraction is equivalent to adding the opposite, 10 − (6 + 9) = 10 + [−(6 + 9)]. Applying the property of multiplication by −1, this is 10 + (−1)(6 + 9). Using the distributive property, we get 10 + (−6) + (−9) = 10 − 6 − 9.Goals and Learning ObjectivesApply addition and multiplication properties to simplify numerical expressions.
Students explore what happens to a hot air balloon when they add …
Students explore what happens to a hot air balloon when they add or remove units of weight or heat. This activity is an informal exploration of addition and subtraction with positive and negative integers.Key ConceptsThis lesson introduces a balloon simulation for adding and subtracting integers. Positive integers are represented by adding units of heat to air and negative integers are represented by adding units of weight. The balloon is pictured next to a vertical number line. The balloon rises one unit for each unit of heat added or each unit of weight removed. The balloon falls one unit for each unit of weight added or each unit of heat removed from the air.Mathematically, adding 1 to a number and subtracting −1 from a number are equivalent and increase the number by 1. Adding −1 to a number and subtracting 1 from a number are equivalent and decrease the number by 1. Addition and subtraction with positive and negative numbers are explored formally in the next several lessons.Goals and Learning ObjectivesExplore the effects of adding or subtracting positive and negative numbers.
Students use number lines to solve addition and subtraction problems involving positive …
Students use number lines to solve addition and subtraction problems involving positive and negative fractions and decimals. They then verify that the same rules they found for integers apply to fractions and decimals as well. Finally, they solve some real-world problems.Key ConceptsThe first four lessons of this unit focused on adding and subtracting integers. Using only integers made it easier for students to create models and visualize the addition and subtraction process. In this lesson, those concepts are extended to positive and negative fractions and decimals. Students will see that the number line model and rules work for these numbers as well.Note that rational number will be formally defined in Lesson 15.Goals and Learning ObjectivesExtend models and rules for adding and subtracting integers to positive and negative fractions and decimals.Solve real-world problems involving addition and subtraction of positive and negative fractions and decimals.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.