Accuracy of measurement in navigation depends very much on the situation. If …
Accuracy of measurement in navigation depends very much on the situation. If a sailor's target is an island 200 km wide, sailing off center by 10 or 20 km is not a major problem. But, if the island were only 1 km wide, it would be missed if off just the smallest bit. Many of the measurements made while navigating involve angles, and a small error in the angle can translate to a much larger error in position when traveling long distances.
Given an assortment of unknown metals to identify, student pairs consider what …
Given an assortment of unknown metals to identify, student pairs consider what unique intrinsic (aka intensive) metal properties (such as density, viscosity, boiling or melting point) could be tested. For the provided activity materials (copper, aluminum, zinc, iron or brass), density is the only property that can be measured so groups experimentally determine the density of the "mystery" metal objects. They devise an experimental procedure to measure mass and volume in order to calculate density. They calculate average density of all the pieces (also via the graphing method if computer tools area available). Then students analyze their own data compared to class data and perform error analysis. Through this inquiry-based activity, students design their own experiments, thus experiencing scientific investigation and experimentation first hand. A provided PowerPoint(TM) file and information sheet helps to introduce the five metals, including information on their history, properties and uses.
The earliest explorers did not have computers or satellites to help them …
The earliest explorers did not have computers or satellites to help them know their exact location. The most accurate tool developed was the sextant to determine latitude and longitude. In this activity, the sextant is introduced and discussed with the class. Students will learn how a sextant can be a reliable tool that is still being used by today's navigators and how computers can help assure accuracy when measuring angles. Also, this activity will show how computers can be used to understand equations even when knowing how to do the math is unknown.
This resource is part of Tools4NCTeachers. This is lesson six in a …
This resource is part of Tools4NCTeachers.
This is lesson six in a series of six lessons focused around developing a mathematical community at the beginning of the school year. The goal is to promote the idea that it is okay to make mistakes in math as long as we try to figure out the mistake and fix it.
This lesson is from Tools 4 NC Teachers. This lesson focuses on …
This lesson is from Tools 4 NC Teachers. This lesson focuses on repeated addition and identifying errors in skip counting. The activities provide opportunities for teachers to discuss the role of dealing with errors while establishing a classroom community of mathematicians.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.