Updating search results...

Search Resources

192 Results

View
Selected filters:
  • volume
How Full Is Full?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about porosity and permeability and relate these concepts to groundwater flow. They use simple materials to conduct a porosity experiment and use the data to understand how environmental engineers decide on the placement and treatment of a drinking water well.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Malinda Schaefer Zarske
Melissa Straten
Date Added:
10/14/2015
How to Speed Up Chemical Reactions (and Get a Date)
Read the Fine Print
Rating
0.0 stars

This clever and inventive video lesson reviews the 5 major ways to speed up chemical reactions and presents them in a way to which students can easily relate. Discussion/assessment questions and suggested supplemental resources are also included.

Subject:
Chemistry
Science
Material Type:
Lesson Plan
Presentation
Provider:
TED
Author:
Aaron Sams and Andrew Park
Date Added:
02/26/2019
If you like popcorn, which one would you buy?
Read the Fine Print
Rating
0.0 stars

Students are challenged with the following task: If two sheets of 8.5 by 11 inch paper are rolled into a short cylinder and a tall cylinder, does one hold more than the other?

Subject:
Math 3
Mathematics
Material Type:
Activity/Lab
Provider:
National Council of Teachers of Mathematics
Author:
National Council of Teachers of Mathematics
Date Added:
02/26/2019
Love it or Fix it: How can I design my dream bedroom?
Rating
0.0 stars

During this problem-based blended learning module students will be designing their dream bedroom as well as creating a scale drawing of the items they chose to be in their bedroom. The launch activity introduces the students to Scale City, which is a video that explores scale models in the real world. Students are then given dimensions for a fictional bedroom to furnish with items of their choosing. Price is not considered in this module, but a budget could be introduced as an extension of the module. Students will then spend time researching items that they would want to place in their bedroom with the area constraints given. Students will have the opportunity to provide each other peer feedback on their bedroom designs. Once students have a rough idea of their bedroom design, they will spend some time creating a scale drawing of their bedroom on graph paper. This will give students the opportunity to use a scale factor to create a scale drawing. Students will again be provided feedback on their designs and be given time to reflect and redesign as needed. If students need extra time to practice using a scale factor and creating scale models, a station rotation lesson has been included as an optional resource.

Subject:
Mathematics
Material Type:
Lesson
Date Added:
12/09/2019
Lung Limit
Read the Fine Print
Rating
0.0 stars

Using simple math, students will figure out their lung capacity by breathing into a bottle filled with water and measuring the volume of water displaced.

Subject:
Mathematics
Statistics and Probability
Material Type:
Activity/Lab
Lesson Plan
Provider:
OER
Author:
wikiEducator, Commonwealth of Learning
Date Added:
02/26/2019
Making Our School Safe & Accessible
Rating
0.0 stars

In this problem-based learning module, students will work collaboratively to improve the accessibility or safety of their school or community. For example, students could identify that accessibility ramps need to be added to the school property or additional sidewalks need to be created/repaired to increase the safety of students as they walk to school. Students would work together to create models of these improvements and create a communications plan that informs the stakeholders of the materials needed to create these improvements (i.e. using volume to determine the amount of concrete, using angles to determine measurements for ramps, etc..).

Subject:
Mathematics
Material Type:
Lesson
Date Added:
12/09/2019
Math, Grade 6, Surface Area and Volume
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Surface Area and Volume

Type of Unit: Conceptual

Prior Knowledge

Students should be able to:

Identify rectangles, parallelograms, trapezoids, and triangles and their bases and heights.
Identify cubes, rectangular prisms, and pyramids and their faces, edges, and vertices.
Understand that area of a 2-D figure is a measure of the figure's surface and that it is measured in square units.
Understand volume of a 3-D figure is a measure of the space the figure occupies and is measured in cubic units.

Lesson Flow

The unit begins with an exploratory lesson about the volumes of containers. Then in Lessons 2–5, students investigate areas of 2-D figures. To find the area of a parallelogram, students consider how it can be rearranged to form a rectangle. To find the area of a trapezoid, students think about how two copies of the trapezoid can be put together to form a parallelogram. To find the area of a triangle, students consider how two copies of the triangle can be put together to form a parallelogram. By sketching and analyzing several parallelograms, trapezoids, and triangles, students develop area formulas for these figures. Students then find areas of composite figures by decomposing them into familiar figures. In the last lesson on area, students estimate the area of an irregular figure by overlaying it with a grid. In Lesson 6, the focus shifts to 3-D figures. Students build rectangular prisms from unit cubes and develop a formula for finding the volume of any rectangular prism. In Lesson 7, students analyze and create nets for prisms. In Lesson 8, students compare a cube to a square pyramid with the same base and height as the cube. They consider the number of faces, edges, and vertices, as well as the surface area and volume. In Lesson 9, students use their knowledge of volume, area, and linear measurements to solve a packing problem.

Subject:
Geometry
Mathematics
Provider:
Pearson
Math, Grade 6, Surface Area and Volume, Diagrams & Problem Solving Strategies
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Lesson OverviewStudents revise their packing plans based on teacher feedback and then take a quiz.Students will use their knowledge of volume, area, and linear measurements to solve problems. They will draw diagrams to help them solve a problem and track and review their choice of problem-solving strategies.Key ConceptsConcepts from previous lessons are integrated into this assessment task: finding the volume of rectangular prisms. Students apply their knowledge, review their work, and make revisions based on feedback from the teacher and their peers. This process creates a deeper understanding of the concepts.Goals and Learning ObjectivesApply your knowledge of the volume of rectangular prisms.Track and review your choice of strategy when problem-solving.

Subject:
Geometry
Material Type:
Lesson Plan
Author:
Pearson
Date Added:
11/02/2020
Math, Grade 6, Surface Area and Volume, Identifying Nets For Cubes
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Lesson OverviewStudents explore nets—2-D patterns that can be folded to form 3-D figures. They start by examining several patterns and determining which nets form a cube. Then, they sketch nets for rectangular prisms. They also find the surface area of the rectangular prisms.ELL: Remind students of the units used to measure area and volume. Use this opportunity to reinforce why square units are used for area (2-D) and cubed units are used for volume (3-D).MathematicsA net is a 2-D pattern that can be folded to form a 3-D figure. In this lesson, the focus is on nets for rectangular prisms. There are many possible nets for any given prism. For example, there are 11 different nets for a cube, as shown below.The surface area of a prism is the area of its net.Goals and Learning ObjectivesIdentify nets for cubes.Sketch the net of a rectangular prism.Find the surface area of a rectangular prism.

Subject:
Geometry
Material Type:
Lesson Plan
Author:
Pearson
Date Added:
11/02/2020
Math, Grade 6, Surface Area and Volume, Volume Formula For Rectangular Prisms
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Lesson OverviewStudents build prisms with fractional side lengths by using unit-fraction cubes (i.e., cubes with side lengths that are unit fractions, such as 13 unit or 14 unit). Students verify that the volume formula for rectangular prisms, V = lwh or V = bh, applies to prisms with side lengths that are not whole numbers.Key ConceptsIn fifth grade, students found volumes of prisms with whole-number dimensions by finding the number of unit cubes that fit inside the prisms. They found that the total number of unit cubes required is the number of unit cubes in one layer (which is the same as the area of the base) times the number of layers (which is the same as the height). This idea was generalized as V = lwh, where l, w, and h are the length, width, and height of the prism, or as V = Bh, where B is the area of the base of the prism and h is the height.Unit cubes in each layer = 3 × 4Number of layers = 5Total number of unit cubes = 3 × 4 × 5 = 60Volume = 60 cubic unitsIn this lesson, students extend this idea to prisms with fractional side lengths. They build prisms using unit-fraction cubes. The volume is the number of unit-fraction cubes in the prism times the volume of each unit-fraction cube. Students show that this result is the same as the volume found by using the formula.For example, you can build a 45-unit by 35-unit by 25-unit prism using 15-unit cubes. This requires 4 × 3  × 2, or 24, 15-unit cubes. Each 15-unit cube has a volume of 1125 cubic unit, so the total volume is 24125 cubic units. This is the same volume obtained by using the formula V = lwh:V=lwh=45×35×25=24125.15-unit cubes in each layer = 3 × 4Number of layers = 2Total number of 15-unit cubes = 3 × 4 × 2 =  24Volume = 24 × 1125 = 24125 cubic units Goals and Learning ObjectivesVerify that the volume formula for rectangular prisms, V = lwh or V = Bh, applies to prisms with side lengths that are not whole numbers.

Subject:
Geometry
Material Type:
Lesson Plan
Author:
Pearson
Date Added:
11/02/2020
Math, Grade 7
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Four full-year digital course, built from the ground up and fully-aligned to the Common Core State Standards, for 7th grade Mathematics. Created using research-based approaches to teaching and learning, the Open Access Common Core Course for Mathematics is designed with student-centered learning in mind, including activities for students to develop valuable 21st century skills and academic mindset.

Subject:
Mathematics
Material Type:
Full Course
Provider:
Pearson
Date Added:
11/02/2020
Math, Grade 7, Putting Math to Work
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Putting Math to Work

Type of Unit: Problem Solving

Prior Knowledge

Students should be able to:

Solve problems involving all four operations with rational numbers.
Write ratios and rates.
Write and solve proportions.
Solve problems involving scale.
Write and solve equations to represent problem situations.
Create and interpret maps, graphs, and diagrams.
Use multiple representations (i.e., tables, graphs, and equations) to represent problem situations.
Calculate area and volume.
Solve problems involving linear measurement.

Lesson Flow

Students apply and integrate math concepts they have previously learned to solve mathematical and real-world problems using a variety of strategies. Students have opportunities to explore four real-world situations involving problem solving in a variety of contexts, complete a project of their choice, and work through a series of Gallery problems.

First, students utilize their spatial reasoning and visualization skills to find the least number of cubes needed to construct a structure when given the front and side views. Then, students select a project to complete as they work through this unit to refine their problem-solving skills. Students explore the relationship between flapping frequency, amplitude, and cruising speed to calculate the Strouhal number of a variety of flying and swimming animals. After that, students explore the volume of the Great Lakes, applying strategies for solving volume problems and analyzing diagrams. Next, students graphically represent a virtual journey through the locks of the Welland Canal, estimating the amount of drop through each lock and the distance traveled. Students have a day in class to work on their projects with their group.

Then, students have two days to explore Gallery problems of their choosing. Finally, students present their projects to the class.

Subject:
Mathematics
Provider:
Pearson
Math, Grade 7, Putting Math to Work, Gallery Problems Exercise
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Allow students who have a clear understanding of the content thus far in the unit to work on Gallery problems of their choosing. You can then use this time to provide additional help to students who need review of the unit's concepts or to assist students who may have fallen behind on work.Gallery ProblemsThe SS Edmund FitzgeraldStudents solve mathematical problems about the sinking of the ship Edmund Fitzgerald.SpiralsStudents learn about the mathematics of spirals. They see spirals in nature and connect spirals to the Fibonacci.Ship It!Students learn about shipping containers and use a unit of measure that is only used in the shipping industry the twenty-foot equivalent unit (TEU).Rideau Canal WaterwayStudents compare information about the Rideau Canal and compare it with the Welland Canal.A Rule of ThumbStudents learn about a “rule of thumb” that people use to estimate the speed of a train they are riding on. They investigate the mathematics of this rule.IntersectionStudents use information on a map to calculate where two streets will intersect.Tolstoy's ProblemStudents learn about Leo Tolstoy, a Russian writer who wrote two of the greatest novels of all time. They solve a problem that Tolstoy found very interesting.The Dog RunStudents imagine having 22 meters of wire fencing for a dog run. They investigate how the area of the dog run changes as the length varies.Bodies of WaterStudents investigate a claim on the Runner's World website about the amount of water in the body of a 160-pound man.

Subject:
Geometry
Material Type:
Lesson Plan
Author:
Pearson
Date Added:
11/02/2020
Math, Grade 7, Putting Math to Work, Interpreting Graphs & Diagrams
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

How much water is in the Great Lakes? Students read and interpret a diagram that shows physical features of the Great Lakes and answer questions based on the diagram. They find the volume of each of the Great Lakes, as well as all five lakes combined, and make a bar graph to represent the volumes.Key ConceptsStudents are expected to use the mathematical skills they have acquired in previous lessons or in previous math courses. The lessons in this unit focus on developing and refining problem-solving skills.Students will:Try a variety of strategies to approaching different types of problems.Devise a problem-solving plan and implement their plan systematically.Become aware that problems can be solved in more than one way.See the value of approaching problems in a systematic manner.Communicate their approaches with precision and articulate why their strategies and solutions are reasonable.Make connections between previous learning and real-world problems.Create efficacy and confidence in solving challenging problems in a real-world setting.Goals and Learning ObjectivesRead and interpret graphs and diagrams.Solve problems involving volume.

Subject:
Geometry
Material Type:
Lesson Plan
Author:
Pearson
Date Added:
11/02/2020
Math, Grade 7, Zooming In On Figures
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Zooming In On Figures

Unit Overview

Type of Unit: Concept; Project

Length of Unit: 18 days and 5 days for project

Prior Knowledge

Students should be able to:

Find the area of triangles and special quadrilaterals.
Use nets composed of triangles and rectangles in order to find the surface area of solids.
Find the volume of right rectangular prisms.
Solve proportions.

Lesson Flow

After an initial exploratory lesson that gets students thinking in general about geometry and its application in real-world contexts, the unit is divided into two concept development sections: the first focuses on two-dimensional (2-D) figures and measures, and the second looks at three-dimensional (3-D) figures and measures.
The first set of conceptual lessons looks at 2-D figures and area and length calculations. Students explore finding the area of polygons by deconstructing them into known figures. This exploration will lead to looking at regular polygons and deriving a general formula. The general formula for polygons leads to the formula for the area of a circle. Students will also investigate the ratio of circumference to diameter ( pi ). All of this will be applied toward looking at scale and the way that length and area are affected. All the lessons noted above will feature examples of real-world contexts.
The second set of conceptual development lessons focuses on 3-D figures and surface area and volume calculations. Students will revisit nets to arrive at a general formula for finding the surface area of any right prism. Students will extend their knowledge of area of polygons to surface area calculations as well as a general formula for the volume of any right prism. Students will explore the 3-D surface that results from a plane slicing through a rectangular prism or pyramid. Students will also explore 3-D figures composed of cubes, finding the surface area and volume by looking at 3-D views.
The unit ends with a unit examination and project presentations.

Subject:
Geometry
Mathematics
Provider:
Pearson
Math, Grade 7, Zooming In On Figures, Applying The Volume Formula
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students discover the formula for finding the volume of a pyramid and apply the formula to solve problems.Key ConceptsThe volume of a pyramid is one-third the volume of a prism with the same base and height. The shape of the base does not matter (including if it’s a circle), and students will see the same one-third comparison between a cylinder and cone.GoalsUnderstand the formula for the volume of a pyramid.Apply the volume formula to solve problems.

Subject:
Geometry
Material Type:
Lesson Plan
Author:
Pearson
Date Added:
11/02/2020