Updating search results...

Search Resources

1335 Results

View
Selected filters:
  • Applied Science
Boxed In and Wrapped Up
Read the Fine Print
Educational Use
Rating
0.0 stars

Students find the volume and surface area of a rectangular box (e.g., a cereal box), and then figure out how to convert that box into a new, cubical box having the same volume as the original. As they construct the new, cube-shaped box from the original box material, students discover that the cubical box has less surface area than the original, and thus, a cube is a more efficient way to package things. Students then consider why consumer goods generally aren't packaged in cube-shaped boxes, even though they would require less material to produce and ultimately, less waste to discard. To display their findings, each student designs and constructs a mobile that contains a duplicate of his or her original box, the new cube-shaped box of the same volume, the scraps that are left over from the original box, and pertinent calculations of the volumes and surface areas involved. The activities involved provide valuable experience in problem solving with spatial-visual relationships.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
09/18/2014
The Boxes Go Mobile
Read the Fine Print
Educational Use
Rating
0.0 stars

To display the results from the previous activity, each student designs and constructs a mobile that contains a duplicate of his or her original box, the new cube-shaped box of the same volume, the scraps that are left over from the original box, and pertinent calculations of the volumes and surface areas involved. They problem solve and apply their understanding of see-saws and lever systems to create balanced mobiles.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
10/14/2015
Breaking Beams
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about stress and strain by designing and building beams using polymer clay. They compete to find the best beam strength to beam weight ratio, and learn about the trade-offs engineers make when designing a structure.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Heavner
Chris Yakacki
Denise Carlson
Malinda Schaefer Zarske
Date Added:
10/14/2015
Breaking the Mold
Read the Fine Print
Educational Use
Rating
0.0 stars

In this math activity, students conduct a strength test using modeling clay, creating their own stress vs. strain graphs, which they compare to typical steel and concrete graphs. They learn the difference between brittle and ductile materials and how understanding the strength of materials, especially steel and concrete, is important for engineers who design bridges and structures.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chris Valenti
Denali Lander
Denise W. Carlson
Joe Friedrichsen
Jonathan S. Goode
Malinda Schaefer Zarske
Natalie Mach
Date Added:
02/19/2009
Break the Tension
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about and experiment with the concept of surface tension. How can a paper clip "float" on top of water? How can a paper boat be powered by soap in water? How do water striders "walk" on top of water? Why do engineers care about surface tension? Students answer these questions as they investigate surface tension and surfactants.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise Carlson
Janet Yowell
Jay Shah
Malinda Schaefer Zarske
Date Added:
10/14/2015
Bridge Building Concepts and Design: Arch Bridges 2 of 4
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students will understand the structural importance of the arch shape in bridge design. Students will compare and contrast modern arch bridges to historical arch bridges. Students will design and sketch their own arch bridge design.

Subject:
Applied Science
Engineering
Material Type:
Lesson Plan
Provider:
Butte County Office of Education
Provider Set:
CTE Online
Author:
David Grant
Date Added:
07/31/2019
Bridge Building Concepts and Design: Cable-Stayed Bridge 4 of 4
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students will understand what a cable-stayed bridge is and its structural importance. Students will identify the different key parts of a cable-stayed bridge. Students will study how the forces of compresion and tension are distributed on this type of bridge. Students will make comparisons between cable stayed bridges and other bridges that they are familiar with. Students will design and construct a scale sketch of their own cable-stayed bridge.

Subject:
Applied Science
Engineering
Material Type:
Lesson Plan
Provider:
Butte County Office of Education
Provider Set:
CTE Online
Author:
David Grant
Date Added:
07/31/2019
Bridge Building Concepts and Design: Suspension Bridges  3 of 4
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students will understand how suspension bridges work. Students will identify the main parts of a suspension bridge. Students will know the signifigance of suspension bridges to modern construction. Students will design and draw their own suspension bridge. Students will learn what civil engineers put into consideration when designing a suspention bridge.

Subject:
Applied Science
Engineering
Material Type:
Lesson Plan
Provider:
Butte County Office of Education
Provider Set:
CTE Online
Author:
David Grant
Date Added:
07/31/2019
Bridge Building Concepts and Design: Truss Bridges 1 of 4
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students will learn the geometry and structural importance of a truss which allows it to be used to make bridges. Students will work in pairs to design, build, and test the strength of their own small wooden truss bridge. Students will know the importance of materials used in truss bridges.

Subject:
Applied Science
Engineering
Material Type:
Lesson Plan
Provider:
Butte County Office of Education
Provider Set:
CTE Online
Author:
David Grant
Date Added:
07/31/2019
Bridges
Read the Fine Print
Educational Use
Rating
0.0 stars

Through a five-lesson series that includes numerous hands-on activities, students are introduced to the importance and pervasiveness of bridges for connecting people to resources, places and other people, with references to many historical and current-day examples. In learning about bridge types arch, beam, truss and suspension students explore the effect of tensile and compressive forces. Students investigate the calculations that go into designing bridges; they learn about loads and cross-sectional areas by designing and testing the strength of model piers. Geology and soils are explored as they discover the importance of foundations, bearing pressure and settlement considerations in the creation of dependable bridges and structures. Students learn about brittle and ductile material properties. Students also learn about the many cost factors that comprise the economic considerations of bridge building. Bridges are unique challenges that take advantage of the creative nature of engineering.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
Build Your Own Insect Trap
Read the Fine Print
Educational Use
Rating
0.0 stars

Students design and construct devices to trap insects that are present in the area around the school. The objective is to ask the right design questions and conduct the right tests to determine if the traps work .

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Build a Biome
Rating
0.0 stars

Switch Zoo is a free interactive website that allows students to create their own animals, habitats and biomes. It provides games for students to get involved with their created animal and zoo. There are several different activities that students can interact with.

Subject:
Applied Science
Computer Science
Material Type:
Activity/Lab
Game
Interactive
Module
Provider:
REMC Association of Michigan
Provider Set:
MiTechKids
Author:
REMC Association of Michigan
Date Added:
03/16/2019
Build a Small Radar System Capable of Sensing Range, Doppler, and Synthetic Aperture Radar Imaging
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

MIT Lincoln Laboratory offers this 3-week course in the design, fabrication, and test of a laptop-based radar sensor capable of measuring Doppler, range, and forming synthetic aperture radar (SAR) images. You do not have to be a radar engineer but it helps if you are interested in any of the following; electronics, amateur radio, physics, or electromagnetics.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
MIT High School Highlights
Author:
Alan Fenn
Gregory Charvat
Jeffrey Herd
Jonathan Williams
Steve Kogon
Date Added:
07/30/2019
Build a Toy Workshop
Read the Fine Print
Educational Use
Rating
0.0 stars

Working as if they are engineers who work for (the hypothetical) Build-a-Toy Workshop company, students apply their imaginations and the engineering design process to design and build prototype toys with moving parts. They set up electric circuits using batteries, wire and motors. They create plans for project material expenses to meet a budget.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Carleigh Samson
Eszter Horanyi
Jacob Crosby
Jonathan McNeil
Malinda Schaefer Zarske
William Surles
Date Added:
09/18/2014
Build an Anemometer
Read the Fine Print
Educational Use
Rating
0.0 stars

Students create their own anemometers instruments for measuring wind speed. They see how an anemometer measures wind speed by taking measurements at various school locations. They also learn about different types of anemometers, real-world applications, and how wind speed information helps engineers decide where to place wind turbines.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Malinda Schaefer Zarske
Natalie Mach
Sabre Duren
Xochitl Zamora-Thompson
Date Added:
10/14/2015
Build an Approximate Scale Model of an Object
Read the Fine Print
Educational Use
Rating
0.0 stars

Students create models of objects of their choice, giving them skills and practice in techniques used by professionals. They make sketches as they build their objects. This activity facilitates a discussion on models and their usefulness.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
05/09/2019
Build an Earthquake City
Read the Fine Print
Educational Use
Rating
0.0 stars

Students build miniature model cities using sugar, bouillon and gelatin cubes. The cities are put through simulated earthquakes to see which cube structures withstand the shaking movements the best.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014