Updating search results...

Search Resources

105 Results

View
Selected filters:
  • decimals
Gr 5 C5 Lesson Be Fast or Be Last
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This lesson provides opportunities for students to compare and order decimals, add and subtract decimals, and estimate the reasonableness of sums and differences of decimals. This is remixable if you add additional supports for the range of learners.

Subject:
Mathematics
Material Type:
Activity/Lab
Lesson Plan
Date Added:
11/16/2019
Grade 5:  Lemonade Stand Fundraiser - A Project on Decimals, Area, and Fractions
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Purpose: Engages students and introduces the element of a lemonade stand needed for building a lemonade stand and creating a business.

Case Overview
In “Lemonade Stand Fundraiser”, students will take the role of lemonade stand designer and business owner responding to a request to raise money for an overnight field trip. They will learn about adding, subtracting, multiplying and dividing decimals, adding and subtracting fractions, and finding the area of a rectangle with fractional lengths as they create their lemonade stand, advertise and start their fundraising business.

***NOTE
This PBL was created before NC adopted it's NC standards. NF.2 and NF.6 are no longer Grade 5 standards but incorporated into other NF standards.

Subject:
Mathematics
Material Type:
Activity/Lab
Date Added:
12/03/2019
Increasing and Decreasing Quantities by a Percent
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

This lesson unit is intended to help teachers assess how well students are able to interpret percent increase and decrease, and in particular, to identify and help students who have the following difficulties: translating between percents, decimals, and fractions; representing percent increase and decrease as multiplication; and recognizing the relationship between increases and decreases.

Subject:
Mathematics
Material Type:
Assessment
Lesson Plan
Provider:
Shell Center for Mathematical Education
Provider Set:
Mathematics Assessment Project (MAP)
Date Added:
06/24/2019
Learning about Multiplication Using Dynamic Sketches of an Area Model
Read the Fine Print
Rating
0.0 stars

Students can learn to visualize the effects of multiplying a fixed positive number by positive numbers greater than 1 and less than 1 with this tool. Using interactive figures, students can investigate how changing the height of a rectangle with a fixed width changes its area. e-Math Investigations are selected e-examples from the electronic version of the Principles and Standards of School Mathematics (PSSM). The e-examples are part of the electronic version of the PSSM document. Given their interactive nature and focused discussion tied to the PSSM document, the e-examples are natural companions to the i-Math investigations.

Subject:
Mathematics
Material Type:
Activity/Lab
Interactive
Lesson Plan
Simulation
Provider:
National Council of Teachers of Mathematics
Author:
Illuminations
Date Added:
02/26/2019
Let's Go Shopping
Read the Fine Print
Rating
0.0 stars

In this lesson, students are given a budget of $500 to spend. They will use the shopping excursion to learn about fractions, decimals, and percents and use proportional relationships to solve multi-step ration and percent problems.

Subject:
Mathematics
Material Type:
Activity/Lab
Lesson Plan
Provider:
Beacon Learning Center
Author:
Carol Spice
Date Added:
02/26/2019
Math, Grade 6, Fractions and Decimals
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Fractions and Decimals

Type of Unit: Concept

Prior Knowledge

Students should be able to:

Multiply and divide whole numbers and decimals.
Multiply a fraction by a whole number.
Multiply a fraction by another fraction.
Write fractions in equivalent forms, including converting between improper fractions and mixed numbers.
Understand the meaning and structure of decimal numbers.

Lesson Flow

This unit extends students’ learning from Grade 5 about operations with fractions and decimals.

The first lesson informally introduces the idea of dividing a fraction by a fraction. Students are challenged to figure out how many times a 14-cup measuring cup must be filled to measure the ingredients in a recipe. Students use a variety of methods, including adding 14 repeatedly until the sum is the desired amount, and drawing a model. In Lesson 2, students focus on dividing a fraction by a whole number. They make a model of the fraction—an area model, bar model, number line, or some other model—and then divide the model into whole numbers of groups. Students also work without a model by looking at the inverse relationship between division and multiplication. Students explore methods for dividing a whole number by a fraction in Lesson 3, for dividing a fraction by a unit fraction in Lesson 4, and for dividing a fraction by another fraction in Lesson 6. Students examine several methods and models for solving such problems, and use models to solve similar problems.

Students apply their learning to real-world contexts in Lesson 6 as they solve word problems that require dividing and multiplying mixed numbers. Lesson 7 is a Gallery lesson in which students choose from a number of problems that reinforce their learning from the previous lessons.

Students review the standard long-division algorithm for dividing whole numbers in Lesson 8. They discuss the different ways that an answer to a whole number division problem can be expressed (as a whole number plus a remainder, as a mixed number, or as a decimal). Students then solve a series of real-world problems that require the same whole number division operation, but have different answers because of how the remainder is interpreted.

Students focus on decimal operations in Lessons 9 and 10. In Lesson 9, they review addition, subtraction, multiplication, and division with decimals. They solve decimal problems using mental math, and then work on a card sort activity in which they must match problems with diagram and solution cards. In Lesson 10, students review the algorithms for the four basic decimal operations, and use estimation or other methods to place the decimal points in products and quotients. They solve multistep word problems involving decimal operations.

In Lesson 11, students explore whether multiplication always results in a greater number and whether division always results in a smaller number. They work on a Self Check problem in which they apply what they have learned to a real-world problem. Students consolidate their learning in Lesson 12 by critiquing and improving their work on the Self Check problem from the previous lesson. The unit ends with a second set of Gallery problems that students complete over two lessons.

Subject:
Mathematics
Provider:
Pearson
Math, Grade 6, Fractions and Decimals, Decimal Multiplication and Division
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students solve decimal multiplication and division problems related to the basic fact 3 × 7 = 21.Students match cards that represent word problems, visual models, and numerical solutions to problems that include the numbers 0.8 and 0.2 for all four operations.Key ConceptsNo new mathematics is introduced in this lesson. Students apply their knowledge about decimal operations.Goals and Learning ObjectivesUse reasoning and mental math to solve problems.Solve word problems involving simple addition, subtraction, multiplication, and division with decimals.

Subject:
Mathematics
Material Type:
Lesson Plan
Author:
Pearson
Date Added:
11/02/2020
Math, Grade 6, Fractions and Decimals, Self Check
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students critique and improve their work on the Self Check.Key ConceptsNo new concepts are introduced in this lesson. To solve the problems in the Self Check, students use fraction division and operations with decimals.Goals and Learning ObjectivesUse knowledge of fraction division and decimal operations to solve problems.

Material Type:
Lesson Plan
Author:
Pearson
Date Added:
11/02/2020
Math, Grade 6, Fractions and Decimals, Where Does the Decimal Point Go?
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students use estimation or other methods to place the decimal points in products and quotients. They review the algorithms for the four basic decimal operations and solve multistep word problems involving decimal operations.Key ConceptsThe algorithms for whole-number operations can be extended to decimal operations. Students learned the algorithms for decimal operations in Grade 5. By the end of Grade 6, they should be fluent with these operations.For decimal addition and subtraction, once the decimal points of the addends are aligned (which aligns like place values), the algorithms are the same as for whole numbers. The decimal point in the sum or difference goes directly below the decimal point in the numbers that were added or subtracted.For decimal multiplication and division, one method is to ignore the decimal points and apply the whole-number algorithms. Then use estimation or some other method to place the decimal point in the answer.Goals and Learning ObjectivesReview and practice the algorithms for all four decimal operations.Solve real-world problems involving decimal operations.

Material Type:
Lesson Plan
Author:
Pearson
Date Added:
11/02/2020
Math, Grade 7
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Four full-year digital course, built from the ground up and fully-aligned to the Common Core State Standards, for 7th grade Mathematics. Created using research-based approaches to teaching and learning, the Open Access Common Core Course for Mathematics is designed with student-centered learning in mind, including activities for students to develop valuable 21st century skills and academic mindset.

Subject:
Mathematics
Material Type:
Full Course
Provider:
Pearson
Date Added:
11/02/2020
Math, Grade 7, Proportional Relationships
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Proportional Relationships

Type of Unit: Concept

Prior Knowledge

Students should be able to:

Understand what a rate and ratio are.
Make a ratio table.
Make a graph using values from a ratio table.

Lesson Flow

Students start the unit by predicting what will happen in certain situations. They intuitively discover they can predict the situations that are proportional and might have a hard time predicting the ones that are not. In Lessons 2–4, students use the same three situations to explore proportional relationships. Two of the relationships are proportional and one is not. They look at these situations in tables, equations, and graphs. After Lesson 4, students realize a proportional relationship is represented on a graph as a straight line that passes through the origin. In Lesson 5, they look at straight lines that do not represent a proportional relationship. Lesson 6 focuses on the idea of how a proportion that they solved in sixth grade relates to a proportional relationship. They follow that by looking at rates expressed as fractions, finding the unit rate (the constant of proportionality), and then using the constant of proportionality to solve a problem. In Lesson 8, students fine-tune their definition of proportional relationship by looking at situations and determining if they represent proportional relationships and justifying their reasoning. They then apply what they have learned to a situation about flags and stars and extend that thinking to comparing two prices—examining the equations and the graphs. The Putting It Together lesson has them solve two problems and then critique other student work.

Gallery 1 provides students with additional proportional relationship problems.

The second part of the unit works with percents. First, percents are tied to proportional relationships, and then students examine percent situations as formulas, graphs, and tables. They then move to a new context—salary increase—and see the similarities with sales taxes. Next, students explore percent decrease, and then they analyze inaccurate statements involving percents, explaining why the statements are incorrect. Students end this sequence of lessons with a formative assessment that focuses on percent increase and percent decrease and ties it to decimals.

Students have ample opportunities to check, deepen, and apply their understanding of proportional relationships, including percents, with the selection of problems in Gallery 2.

Subject:
Mathematics
Provider:
Pearson
Math, Grade 7, Proportional Relationships, Identifying Proportional Relationships
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students determine whether a relationship between two quantities that vary is a proportional relationship in three different situations: the relationship between the dimensions of the actual Empire State Building and a miniature model of the building; the relationship between the distance and time to travel to an amusement park; and the relationship between time and temperature at an amusement park.Key ConceptsWhen the ratio between two varying quantities remains constant, the relationship between the two quantities is called a proportional relationship. For a ratio A:B, the proportional relationship can be described as the collection of ratios equivalent to A:B, or cA:cB, where c is positive.Goals and Learning ObjectivesIdentify proportional relationships.Explain why a situation represents a proportional relationship or why it does not.Determine missing values in a table of quantities based on a proportional relationship.

Material Type:
Lesson Plan
Author:
Pearson
Date Added:
11/02/2020
Math, Grade 7, Samples and Probability
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Samples and ProbabilityType of Unit: ConceptualPrior KnowledgeStudents should be able to:Understand the concept of a ratio.Write ratios as percents.Describe data using measures of center.Display and interpret data in dot plots, histograms, and box plots.Lesson FlowStudents begin to think about probability by considering the relative likelihood of familiar events on the continuum between impossible and certain. Students begin to formalize this understanding of probability. They are introduced to the concept of probability as a measure of likelihood, and how to calculate probability of equally likely events using a ratio. The terms (impossible, certain, etc.) are given numerical values. Next, students compare expected results to actual results by calculating the probability of an event and conducting an experiment. Students explore the probability of outcomes that are not equally likely. They collect data to estimate the experimental probabilities. They use ratio and proportion to predict results for a large number of trials. Students learn about compound events. They use tree diagrams, tables, and systematic lists as tools to find the sample space. They determine the theoretical probability of first independent, and then dependent events. In Lesson 10 students identify a question to investigate for a unit project and submit a proposal. They then complete a Self Check. In Lesson 11, students review the results of the Self Check, solve a related problem, and take a Quiz.Students are introduced to the concept of sampling as a method of determining characteristics of a population. They consider how a sample can be random or biased, and think about methods for randomly sampling a population to ensure that it is representative. In Lesson 13, students collect and analyze data for their unit project. Students begin to apply their knowledge of statistics learned in sixth grade. They determine the typical class score from a sample of the population, and reason about the representativeness of the sample. Then, students begin to develop intuition about appropriate sample size by conducting an experiment. They compare different sample sizes, and decide whether increasing the sample size improves the results. In Lesson 16 and Lesson 17, students compare two data sets using any tools they wish. Students will be reminded of Mean Average Deviation (MAD), which will be a useful tool in this situation. Students complete another Self Check, review the results of their Self Check, and solve additional problems. The unit ends with three days for students to work on Gallery problems, possibly using one of the days to complete their project or get help on their project if needed, two days for students to present their unit projects to the class, and one day for the End of Unit Assessment.

Subject:
Mathematics
Statistics and Probability
Provider:
Pearson
Math, Grade 7, Samples and Probability, Calculating Probability As A Ratio
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students begin to formalize their understanding of probability. They are introduced to the concept of probability as a measure of likelihood and how to calculate probability as a ratio. The terms discussed (impossible, certain, etc.) in Lesson 1 are given numerical values.Key ConceptsStudents will think of probability as a ratio; it can be written as a fraction, decimal, or a percent ranging from 0 to 1.Students will think about ratio and proportion to predict results.Goals and Learning ObjectivesDefine probability as a measure of likelihood and the ratio of favorable outcomes to the total number of outcomes for an event.Predict results based on theoretical probability using ratio and proportion.

Subject:
Statistics and Probability
Material Type:
Lesson Plan
Author:
Pearson
Date Added:
11/02/2020
Math, Grade 7, Samples and Probability, What's the probability?
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students begin to formalize their understanding of probability. They are introduced to the concept of probability as a measure of likelihood and how to calculate probability as a ratio. The terms discussed (impossible, certain, etc.) in Lesson 1 are given numerical values.Key ConceptsStudents will think of probability as a ratio; it can be written as a fraction, decimal, or a percent ranging from 0 to 1.Students will think about ratio and proportion to predict results.Goals and Learning ObjectivesDefine probability as a measure of likelihood and the ratio of favorable outcomes to the total number of outcomes for an event.Predict results based on theoretical probability using ratio and proportion.

Subject:
Statistics and Probability
Material Type:
Lesson Plan
Author:
KIMBERLY INMAN
Date Added:
11/05/2020
Math, Grade 7, Working With Rational Numbers
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Working With Rational Numbers

Type of Unit: Concept

Prior Knowledge

Students should be able to:

Compare and order positive and negative numbers and place them on a number line.
Understand the concepts of opposites absolute value.

Lesson Flow

The unit begins with students using a balloon model to informally explore adding and subtracting integers. With the model, adding or removing heat represents adding or subtracting positive integers, and adding or removing weight represents adding or subtracting negative integers.

Students then move from the balloon model to a number line model for adding and subtracting integers, eventually extending the addition and subtraction rules from integers to all rational numbers. Number lines and multiplication patterns are used to find products of rational numbers. The relationship between multiplication and division is used to understand how to divide rational numbers. Properties of addition are briefly reviewed, then used to prove rules for addition, subtraction, multiplication, and division.

This unit includes problems with real-world contexts, formative assessment lessons, and Gallery problems.

Subject:
Algebra
Mathematics
Provider:
Pearson