Students follow the steps of the engineering design process while learning more …
Students follow the steps of the engineering design process while learning more about assistive devices and biomedical engineering applied to basic structural engineering concepts. Their engineering challenge is to design, build and test small-scale portable wheelchair ramp prototypes for fictional clients. They identify suitable materials and demonstrate two methods of representing design solutions (scale drawings and simple models or classroom prototypes). Students test the ramp prototypes using a weighted bucket; successful prototypes meet all the student-generated design requirements, including support of a predetermined weight.
Students are introduced to renewable energy, including its relevance and importance to …
Students are introduced to renewable energy, including its relevance and importance to our current and future world. They learn the mechanics of how wind turbines convert wind energy into electrical energy and the concepts of lift and drag. Then they apply real-world technical tools and techniques to design their own aerodynamic wind turbines that efficiently harvest the most wind energy. Specifically, teams each design a wind turbine propeller attachment. They sketch rotor blade ideas, create CAD drawings (using Google SketchUp) of the best designs and make them come to life by fabricating them on a 3D printer. They attach, test and analyze different versions and/or configurations using a LEGO wind turbine, fan and an energy meter. At activity end, students discuss their results and the most successful designs, the aerodynamics characteristics affecting a wind turbine's ability to efficiently harvest wind energy, and ideas for improvement. The activity is suitable for a class/team competition. Example 3D rotor blade designs are provided.
This course was created by the Rethink Education Content Development Team in …
This course was created by the Rethink Education Content Development Team in partnership with the North Carolina Virtual Public Schools. This course is aligned to the NC Standards for 7th Grade Math.
This course was created by the Rethink Education Content Development Team in …
This course was created by the Rethink Education Content Development Team in partnership with the North Carolina Virtual Public Schools. This course is aligned to the NC Standards for 7th Grade Math.
This course was created by the Rethink Education Content Development Team in …
This course was created by the Rethink Education Content Development Team in partnership with the North Carolina Virtual Public Schools. This course is aligned to the NC Standards for 7th Grade Math.
Students explore orbit transfers and, specifically, Hohmann transfers. They investigate the orbits …
Students explore orbit transfers and, specifically, Hohmann transfers. They investigate the orbits of Earth and Mars by using cardboard and string. Students learn about the planets' orbits around the sun, and about a transfer orbit from one planet to the other. After the activity, students will know exactly what is meant by a delta-v maneuver!
In this lesson, students understand that a scale drawing is either the …
In this lesson, students understand that a scale drawing is either the reduction or the enlargement of a two-dimensional picture. Students compare the scale drawing picture with the original picture and determine if the scale drawing is a reduction or an enlargement. Students match points and figures in one picture with points and figures in the other picture.
In this lesson, students recognize that the enlarged or reduced distances in …
In this lesson, students recognize that the enlarged or reduced distances in a scale drawing are proportional to the corresponding distance in the original picture. Students recognize the scale factor to be the constant of proportionality. Given a picture or description of geometric figures, students make a scale drawing with a given scale factor.
In this lesson, students are given a scale drawingn to produce a …
In this lesson, students are given a scale drawingn to produce a scale drawing of a different scale. Students recognize that the scale drawing of a different scale is a scale drawing of the original scale drawing. For the scale drawing of a different scale, students compute the scale factor for the original scale drawing.
In this lesson, students are given a scale drawing to produce a …
In this lesson, students are given a scale drawing to produce a scale drawing of a different scale. Students recognize that the scale drawing of a different scale is a scale drawing of the original scale drawing. For the scale drawing of a different scale, students compute the scale factor for the original scale drawing.
This is a set of three, one-page problems about the scale of …
This is a set of three, one-page problems about the scale of objects in images returned by spacecraft. Learners will measure scaled drawings using high-resolution images of the lunar and martian surfaces. Options are presented so that students may learn about the Lunar Reconnaissance Orbiter (LRO) mission through a NASA press release or by viewing a NASA eClips video [4 min.]. This activity is part of the Space Math multi-media modules that integrate NASA press releases, NASA archival video, and mathematics problems targeted at specific math standards commonly encountered in middle school.
Given a scale factor as a percent, students make a scale drawing …
Given a scale factor as a percent, students make a scale drawing of a picture or geometric figure using that scale, recognizing that the enlarged or reduced distances in a scale drawing are proportional to the corresponding distances in the original picture. Students understand scale factor to be the constant of proportionality. Students make scale drawings in which the horizontal and vertical scales are different.
Students learn how different characteristics of shapes—side lengths, perimeter and area—change when …
Students learn how different characteristics of shapes—side lengths, perimeter and area—change when the shapes are scaled, either enlarged or reduced. Student pairs conduct a “scaling investigation” to measure and calculate shape dimensions (rectangle, quarter circle, triangle; lengths, perimeters, areas) from a bedroom floorplan provided at three scales. They analyze their data to notice the mathematical relationships that hold true during the scaling process. They see how this can be useful in real-world situations like when engineers design wearable or implantable biosensors. This prepares students for the associated activity in which they use this knowledge to help them reduce or enlarge their drawings as part of the process of designing their own wearables products. Pre/post-activity quizzes, a worksheet and wrap-up concepts handout are provided.
Students learn how to create two-dimensional representations of three-dimensional objects by utilizing …
Students learn how to create two-dimensional representations of three-dimensional objects by utilizing orthographic projection techniques. They build shapes using cube blocks and then draw orthographic and isometric views of those shapes—which are the side views, such as top, front, right—with no depth indicated. Then working in pairs, one blindfolded partner describes a shape by feel alone as the other partner draws what is described. A worksheet is provided. This activity is part of a multi-activity series towards improving spatial visualization skills.
In this activity, students will learn how to read a topographical map …
In this activity, students will learn how to read a topographical map and how to triangulate with just a map. True triangulation requires both a map and compass, but to simplify the activity and make it possible indoors, the compass information is given. Students will practice converting a compass measurement to a protractor measurement, as well as reverse a bearing direction (i.e., if they know a tree's bearing is 100 degrees from you, they can determine what bearing they are from the tree). Students will use the accompanying worksheets to take a bearing of certain landmarks and then start at those landmarks to work backwards to figure out where they are.
In this activity, students will learn how to actually triangulate using a …
In this activity, students will learn how to actually triangulate using a compass, topographical (topo) map and view of outside landmarks. It is best if a field trip to another location away from school is selected. The location should have easily discernable landmarks (like mountains or radio towers) and changes in elevation (to illustrate the topographical features) to enhance the activity. A national park is an ideal location, and visiting a number of parks, especially parks with hiking trails, is especially beneficial.
Students learn how to identify the major features in a topographical map. …
Students learn how to identify the major features in a topographical map. They learn that maps come in a variety of forms: city maps, road maps, nautical maps, topographical maps, and many others. Map features reflect the intended use. For example, a state map shows cities, major roads, national parks, county lines, etc. A city map shows streets and major landmarks for that city, such as hospitals and parks. Topographical maps help navigate the wilderness by showing the elevation, mountains, peaks, rivers and trails.
In this lesson students will study the surface area and volume of …
In this lesson students will study the surface area and volume of three-dimensional shapes by creating a water tank comprised of these shapes. Students will work in groups of 4-5 to research water tanks, develop scale drawings and build a scale model. Teacher will evaluate the project using a rubric and students will assess one anothers cooperative skills using a rubric.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.