Updating search results...

Search Resources

65 Results

View
Selected filters:
  • design
Designing and Building a Musical Instrument
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students will explore properties of sound and sound waves, experiment with building models of various musical instruments, then design and build a playable musical instrument of their choosing.

Subject:
Applied Science
Material Type:
Activity/Lab
Module
Reading
Provider:
Lane County STEM Hub
Provider Set:
Content in Context SuperLessons
Author:
John Etheredge
Date Added:
07/31/2019
Does It Cut It? Understanding Wind Turbine Blade Performance
Read the Fine Print
Educational Use
Rating
0.0 stars

Students gain an understanding of the factors that affect wind turbine operation. Following the steps of the engineering design process, engineering teams use simple materials (cardboard and wooden dowels) to build and test their own turbine blade prototypes with the objective of maximizing electrical power output for a hypothetical situation—helping scientists power their electrical devices while doing research on a remote island. Teams explore how blade size, shape, weight and rotation interact to achieve maximal performance, and relate the power generated to energy consumed on a scale that is relevant to them in daily life. A PowerPoint® presentation, worksheet and post-activity test are provided.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Alexander Kon
Date Added:
05/09/2019
Dream It, Build It, Launch It!
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

This Super Lesson utilizes Project Based Learning to assist learners with designing, building, and testing flying contraptions as an introduction to Engineering. The goal of this project is to engage students in collaborative team work and to introduce students to the Science and Engineering Practices: Asking Questions and Defining Problems, Planning and Carrying Out Investigations, and Constructing Explanations and Designing Solutions.

We have offered this Super Lesson as an 8-week elective course, developing and strengthening student interest in applied Math and Science topics. It could also be offered within upper elementary or middle school Science and Math courses. In addition, each week’s topic could be used as a stand alone mini-lesson if time is limited. We have worked to include multiple options within this unit to make it accessible to both general education and special education programs, including recommendations for modifications and extensions.

Subject:
Applied Science
Material Type:
Activity/Lab
Interactive
Lesson Plan
Unit of Study
Provider:
Lane County STEM Hub
Provider Set:
Content in Context SuperLessons
Date Added:
06/30/2016
Earthquake 8.2
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

An engineering and design lesson for middle school (our 7th grade standards).

In the aftermath of a natural disaster, can you engineer a device that will keep medicine within a 40-60°F range using natural resources from the biome you live in, and/or debris created by the disaster for three days, until the Red Cross can arrive?

You are a team of relief workers in __________________after a major earthquake/tsunami has occurred. Your team lead as just told you about a young women with diabetes has been injured and needs insulin to be delivered __________ miles away (no open roads). Your team will need to research, design, and build a portable device to keep the insulin between _____ and ______ °(F/C) for _____ days. Once you return you will present the effectiveness of your device to your lead and a team other relief workers showing your both your design/device and explaining the process.

Subject:
Science
Material Type:
Activity/Lab
Provider:
Lane County STEM Hub
Provider Set:
Content in Context SuperLessons
Author:
Bobbi Dano
Jen Bultler
Date Added:
07/31/2019
Fairly Fundamental Facts about Forces and Structures
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the five fundamental loads: compression, tension, shear, bending and torsion. They learn about the different kinds of stress each force exerts on objects.

Subject:
Applied Science
Engineering
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Douglas Prime
Date Added:
05/09/2019
Feeling Hot, Hot, Hot
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

This project will be focused on designing, constructing and evaluating different containers to determine the optimal design for heat retention. After students have constructed their designs and collected and shared data, students will evaluate the class data to create an optimal design for our culminating event: warming ooey, gooey chocolate chip cookies to perfection! Through this activity, students will learn about energy transfer, engineering design process, data collection, graphing, rate of change, optimization, surface area and proportions. The students will test the effectiveness of their design using Vernier Probes to gather quantitative data and graphing the rate of temperature change. They will then create a poster presentation to share their data to the class. Students will use their mathematical skills to quantitatively analyze the strength and weaknesses of their designs while enjoying some delicious, toasty, warm cookies.

Subject:
Mathematics
Physical Science
Science
Material Type:
Activity/Lab
Data Set
Lesson Plan
Provider:
Lane County STEM Hub
Provider Set:
Content in Context SuperLessons
Date Added:
07/31/2019
Hare and Snail Challenges
Read the Fine Print
Educational Use
Rating
0.0 stars

Students engage in the second design challenge of the unit, which is an extension of the maze challenge they solved in the first lesson/activity of this unit. Students extend the ideas learned in the maze challenge with a focus more on the robot design. Gears are a very important part of any machine, particularly when it has a power source such as engine or motor. Specifically, students learn how to design the gear train from the LEGO MINDSTORMS(TM) NXT servomotor to the wheel to make the LEGO taskbot go faster or slower. A PowerPoint® presentation, pre/post quizzes and a worksheet are provided.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Pranit Samarth
Sachin Nair
Satish S. Nair
Date Added:
09/18/2014
Heads Up
Read the Fine Print
Educational Use
Rating
0.0 stars

The purpose of this activity is to demonstrate some of the different parts of an airplane through the construction of a paper airplane. Students will build several different kinds of paper airplanes in order to figure out what makes an airplane fly and what can be changed to influence the flying characteristics of an airplane.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Alex Conner
Geoffrey Hill
Janet Yowell
Malinda Schaefer Zarske
Tom Rutkowski
Date Added:
10/14/2015
Lego Robotics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

LEGO® robotics uses LEGO®s as a fun tool to explore robotics, mechanical systems, electronics, and programming. This seminar is primarily a lab experience which provides students with resources to design, build, and program functional robots constructed from LEGO®s and a few other parts such as motors and sensors.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
MIT High School Highlights
Author:
James Rising
Date Added:
07/30/2019
Light Your Way
Read the Fine Print
Educational Use
Rating
0.0 stars

During a power failure, or when we go outside at night, we grab a flashlight so we can find our way. What happens inside a flashlight that makes the bulb light up? Why do we need a switch to turn on a flashlight? Have you ever noticed that for the flashlight to work you must orient the batteries a certain way as you insert them into the casing? Many people do not know that a flashlight is a simple series circuit. In this hands-on activity, students build this everyday household item and design their own operating series circuit flashlights.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Daria Kotys-Schwartz
Denise W. Carlson
Joe Friedrichsen
Malinda Schaefer Zarske
Sabre Duren
Xochitl Zamora Thompson
Date Added:
10/14/2015
Load It Up!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students take a hands-on look at the design of bridge piers (columns). First they brainstorm types of loads that might affect a Colorado bridge. Then they determine the maximum possible load for that scenario, and calculate the cross-sectional area of a column designed to support that load. Choosing from clay, foam or marshmallows, they create model columns and test their calculations.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chris Valenti
Denali Lander
Denise W. Carlson
Joe Friedrichsen
Jonathan S. Goode
Malinda Schaefer Zarske
Natalie Mach
Date Added:
10/14/2015
Math, Grade 7
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Four full-year digital course, built from the ground up and fully-aligned to the Common Core State Standards, for 7th grade Mathematics. Created using research-based approaches to teaching and learning, the Open Access Common Core Course for Mathematics is designed with student-centered learning in mind, including activities for students to develop valuable 21st century skills and academic mindset.

Subject:
Mathematics
Material Type:
Full Course
Provider:
Pearson
Date Added:
11/02/2020
Math, Grade 7, Zooming In On Figures
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Zooming In On Figures

Unit Overview

Type of Unit: Concept; Project

Length of Unit: 18 days and 5 days for project

Prior Knowledge

Students should be able to:

Find the area of triangles and special quadrilaterals.
Use nets composed of triangles and rectangles in order to find the surface area of solids.
Find the volume of right rectangular prisms.
Solve proportions.

Lesson Flow

After an initial exploratory lesson that gets students thinking in general about geometry and its application in real-world contexts, the unit is divided into two concept development sections: the first focuses on two-dimensional (2-D) figures and measures, and the second looks at three-dimensional (3-D) figures and measures.
The first set of conceptual lessons looks at 2-D figures and area and length calculations. Students explore finding the area of polygons by deconstructing them into known figures. This exploration will lead to looking at regular polygons and deriving a general formula. The general formula for polygons leads to the formula for the area of a circle. Students will also investigate the ratio of circumference to diameter ( pi ). All of this will be applied toward looking at scale and the way that length and area are affected. All the lessons noted above will feature examples of real-world contexts.
The second set of conceptual development lessons focuses on 3-D figures and surface area and volume calculations. Students will revisit nets to arrive at a general formula for finding the surface area of any right prism. Students will extend their knowledge of area of polygons to surface area calculations as well as a general formula for the volume of any right prism. Students will explore the 3-D surface that results from a plane slicing through a rectangular prism or pyramid. Students will also explore 3-D figures composed of cubes, finding the surface area and volume by looking at 3-D views.
The unit ends with a unit examination and project presentations.

Subject:
Geometry
Mathematics
Provider:
Pearson
Math, Grade 7, Zooming In On Figures, Applying Scale to Project
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students will resume their project and decide on dimensions for their buildings. They will use scale to calculate the dimensions and areas of their model buildings when full size. Students will also complete a Self Check in preparation for the Putting It Together lesson.Key ConceptsThe first part of the project is essentially a review of the unit so far. Students will find the area of a composite figure—either a polygon that can be broken down into known areas, or a regular polygon. Students will also draw the figure using scale and find actual lengths and areas.GoalsRedraw a scale drawing at a different scale.Find measurements using a scale drawing.Find the area of a composite figure.SWD: Consider what supplementary materials may benefit and support students with disabilities as they work on this project:Vocabulary resource(s) that students can reference as they work:List of formulas, with visual supports if appropriateClass summaries or lesson artifacts that help students to recall and apply newly introduced skillsChecklists of expectations and steps required to promote self-monitoring and engagementModels and examplesStudents with disabilities may take longer to develop a solid understanding of newly introduced skills and concepts. They may continue to require direct instruction and guided practice with the skills and concepts relating to finding area and creating and interpreting scale drawings. Check in with students to assess their understanding of newly introduced concepts and plan review and reinforcement of skills as needed.ELL: As academic vocabulary is reviewed, be sure to repeat it and allow students to repeat after you as needed. Consider writing the words as they are being reviewed. Allow enough time for ELLs to check their dictionaries if they wish.

Subject:
Geometry
Material Type:
Lesson Plan
Author:
Pearson
Date Added:
11/02/2020
Math, Grade 7, Zooming In On Figures, Changing Scale
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students further explore scale, taking a scale drawing floor plan and redrawing it at a different scale.Key ConceptsStudents explore change from one scale to another, focusing on the ratios. Students will draw a scale model of a house.GoalsRedraw a scale drawing at a different scale.Find measurements using a scale drawing.

Subject:
Geometry
Material Type:
Lesson Plan
Author:
Pearson
Date Added:
11/02/2020
Maze Challenge
Read the Fine Print
Educational Use
Rating
0.0 stars

As the first engineering design challenge of the unit, students are introduced to the logic for solving a maze. First they observe a blindfolded student volunteer being guided through a classroom maze by the simple verbal instructions of another student. In this demonstration, the blindfolded student represents a robot and the guiding student represents programming commands. Then student groups apply that logic to program LEGO MINDSTORMS(TM) NXT robots to navigate through a maze, first with no sensors, and then with sensors. A PowerPoint® presentation, pre/post quizzes and a worksheet are provided.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Pranit Samarth
Sachin Nair
Satish S. Nair
Date Added:
09/18/2014
Measuring the Speed of Go-Carts
Read the Fine Print
Rating
0.0 stars

In this activity, students will make go-carts and measure the speed, then change different factors of the experiment and see how the speed changes. In day 1, students will design and build a cart based on a specified set of materials, and then complete several trials to test the cart by rolling it down a ramp. Through discussion and journaling students will share their designs and compare the speeds of carts. In day 2, students will experiment with ways to increase or decrease the speed of their cart.

Subject:
Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
OER
Author:
Sandy Harthan, Minnesota Science Teachers Education Project
Date Added:
02/26/2019
Mobile Forces
Read the Fine Print
Educational Use
Rating
0.0 stars

The application of engineering principles is explored in the creation of mobiles. As students create their own mobiles, they take into consideration the forces of gravity and convection air currents. They learn how an understanding of balancing forces is important in both art and engineering design.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Malinda Schaefer Zarske
Natalie Mach
Date Added:
10/14/2015
Park It!
Read the Fine Print
Educational Use
Rating
0.0 stars

The difference between an architect and an engineer is sometimes confusing because their roles in building design can be similar. Students experience a bit of both professions by following a set of requirements and meeting given constraints as they create a model parking garage. They experience the engineering design process first-hand as they design, build and test their models. They draw a blueprint for their design, select the construction materials and budget their expenditures. They also test their structures for strength and find their maximum loads.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Abigail Watrous
Denali Lander
Janet Yowell
Katherine Beggs
Melissa Straten
Sara Stemler
Date Added:
10/14/2015