Updating search results...

Search Resources

481 Results

View
Selected filters:
  • Engineering
Balsa Glider Competition
Read the Fine Print
Educational Use
Rating
0.0 stars

The purpose of this activity is to bring together the students' knowledge of engineering and airplanes and the creation of a glider model to determine how each modification affects the flight. The students will use a design procedure whereby one variable is changed and all the others are kept constant.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Alex Conner
Geoffrey Hill
Janet Yowell
Malinda Schaefer Zarske
Tom Rutkowski
Date Added:
10/14/2015
Balsa Towers
Read the Fine Print
Educational Use
Rating
0.0 stars

Students groups use balsa wood and glue to build their own towers using some of the techniques they learned from the associated lesson. While general guidelines are provided, give students freedom with their designs and encourage them to implement what they have learned about structural engineering. The winning team design is the tower with the highest strength-to-weight ratio.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Benjamin Burnham
Kelly Devereaux
Date Added:
09/18/2014
Battling for Oxygen
Read the Fine Print
Educational Use
Rating
0.0 stars

Using gumdrops and toothpicks, students conduct a large-group, interactive ozone depletion model. Students explore the dynamic and competing upper atmospheric roles of the protective ozone layer, the sun's UV radiation and harmful human-made CFCs (chlorofluorocarbons).

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
The Beat Goes On
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students learn about their heart rate and different ways it can be measured. Students construct a simple measurement device using clay and a toothpick, and then use this device to measure their heart rate under different circumstances (i.e., sitting, standing and jumping). Students make predictions and record data on a worksheet.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denali Lander
Janet Yowell
Jessica Todd
Malinda Schaefer Zarske
Sara Born
Date Added:
09/18/2014
Bend That Bar
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about material properties, and that engineers must consider many different materials properties when designing. This activity focuses on strength-to-weight ratios and how sometimes the strongest material is not always the best material.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Alex Conner
Geoffrey Hill
Janet Yowell
Malinda Schaefer Zarske
Tom Rutkowski
Date Added:
10/14/2015
The Best Nest
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students are asked to build a nest that will keep a bird and 3 eggs safe. Nest must hold a bird and 3 plastic eggs and balance on tree branch.

Subject:
Applied Science
Engineering
STEM
Science
Material Type:
Activity/Lab
Author:
Various
Steve Johnson
Date Added:
09/03/2024
Better By Design
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use the scientific method to determine the effect of control surfaces on a paper glider. They construct paper airplanes (model gliders) and test their performance to determine the base characteristics of the planes. Then they change one of the control surfaces and compare the results to their base glider in order to determine the cause and effect relationship of the control surfaces.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Alex Conner
Geoffrey Hill
Janet Yowell
Malinda Schaefer Zarske
Tom Rutkowski
Date Added:
10/14/2015
The Big Dig: Fossil Excavation Challenge
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Learners will become paleontologists for a day. They will discover this career and undertake the challenge of designing a fossil excavator structure to remove newly discovered fossils stuck in a cave crevice. As a class, graph the results on the amount of weight each structure could lift without breaking.

Subject:
Applied Science
Engineering
STEM
Science
Material Type:
Activity/Lab
Author:
Shanda Edwards
Date Added:
09/04/2024
Biomedical Devices for the Eyes
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students examine the structure and function of the human eye, learning some amazing features about our eyes, which provide us with sight and an understanding of our surroundings. Students also learn about some common eye problems and the biomedical devices and medical procedures that resolve or help to lessen the effects of these vision deficiencies, including vision correction surgery.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Biomedical Engineering and the Human Body
Read the Fine Print
Educational Use
Rating
0.0 stars

Human beings are fascinating and complex living organisms a symphony of different functional systems working in concert. Through a 10-lesson series with hands-on activities students are introduced to seven systems of the human body skeletal, muscular, circulatory, respiratory, digestive, sensory, and reproductive as well as genetics. At every stage, they are also introduced to engineers' creative, real-world involvement in caring for the human body.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
Biomimicry: Echolocation in Robotics
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use ultrasonic sensors and LEGO© MINDSTORMS© NXT robots to emulate how bats use echolocation to detect obstacles. They measure the robot's reaction times as it senses objects at two distances and with different sensor threshold values, and again after making adjustments to optimize its effectiveness. Like engineers, they gather and graph data to analyze a given design (from the tutorial) and make modifications to the sensor placement and/or threshold values in order to improve the robot's performance (iterative design). Students see how problem solving with biomimicry design is directly related to understanding and making observations of nature.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
James Muldoon
Date Added:
09/18/2014
Bouncing Balls
Read the Fine Print
Educational Use
Rating
0.0 stars

Students examine how different balls react when colliding with different surfaces, giving plenty of opportunity for them to see the difference between elastic and inelastic collisions, learn how to calculate momentum, and understand the principle of conservation of momentum.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Bailey Jones
Chris Yakacki
Denise Carlson
Malinda Schaefer Zarske
Matt Lundberg
Date Added:
10/14/2015
Boxed In and Wrapped Up
Read the Fine Print
Educational Use
Rating
0.0 stars

Students find the volume and surface area of a rectangular box (e.g., a cereal box), and then figure out how to convert that box into a new, cubical box having the same volume as the original. As they construct the new, cube-shaped box from the original box material, students discover that the cubical box has less surface area than the original, and thus, a cube is a more efficient way to package things. Students then consider why consumer goods generally aren't packaged in cube-shaped boxes, even though they would require less material to produce and ultimately, less waste to discard. To display their findings, each student designs and constructs a mobile that contains a duplicate of his or her original box, the new cube-shaped box of the same volume, the scraps that are left over from the original box, and pertinent calculations of the volumes and surface areas involved. The activities involved provide valuable experience in problem solving with spatial-visual relationships.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
09/18/2014
The Boxes Go Mobile
Read the Fine Print
Educational Use
Rating
0.0 stars

To display the results from the previous activity, each student designs and constructs a mobile that contains a duplicate of his or her original box, the new cube-shaped box of the same volume, the scraps that are left over from the original box, and pertinent calculations of the volumes and surface areas involved. They problem solve and apply their understanding of see-saws and lever systems to create balanced mobiles.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
10/14/2015
Breaking Beams
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about stress and strain by designing and building beams using polymer clay. They compete to find the best beam strength to beam weight ratio, and learn about the trade-offs engineers make when designing a structure.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Heavner
Chris Yakacki
Denise Carlson
Malinda Schaefer Zarske
Date Added:
10/14/2015
Breaking the Mold
Read the Fine Print
Educational Use
Rating
0.0 stars

In this math activity, students conduct a strength test using modeling clay, creating their own stress vs. strain graphs, which they compare to typical steel and concrete graphs. They learn the difference between brittle and ductile materials and how understanding the strength of materials, especially steel and concrete, is important for engineers who design bridges and structures.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chris Valenti
Denali Lander
Denise W. Carlson
Joe Friedrichsen
Jonathan S. Goode
Malinda Schaefer Zarske
Natalie Mach
Date Added:
02/19/2009
Break the Tension
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about and experiment with the concept of surface tension. How can a paper clip "float" on top of water? How can a paper boat be powered by soap in water? How do water striders "walk" on top of water? Why do engineers care about surface tension? Students answer these questions as they investigate surface tension and surfactants.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise Carlson
Janet Yowell
Jay Shah
Malinda Schaefer Zarske
Date Added:
10/14/2015
Bridge Building Concepts and Design: Arch Bridges 2 of 4
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students will understand the structural importance of the arch shape in bridge design. Students will compare and contrast modern arch bridges to historical arch bridges. Students will design and sketch their own arch bridge design.

Subject:
Applied Science
Engineering
Material Type:
Lesson Plan
Provider:
Butte County Office of Education
Provider Set:
CTE Online
Author:
David Grant
Date Added:
07/31/2019