In this unit, students will learn about the equations that describe the …
In this unit, students will learn about the equations that describe the motion of an object. Lessons in this unit include: The Kinematic Equation; Kinematic Equations and Problem-Solving; Kinematic Equations and Free Fall; Sample Problems and Solutions; and Kinematic Equations and Graphs. This unit includes animations and mini quizzes to check for understanding and facilitate learning.
In Part 1 of this unit, students will learn about data collection, …
In Part 1 of this unit, students will learn about data collection, graphing skills (both by hand and computer aided [Desmos]), and the fundamental mathematical patterns of the course: horizontal line, proportional, linear, quadratic, and inverse. Students perform several experiments, each targeting a different pattern and build the mathematical models of physical phenomena. During each experiment, students start with an uninformed wild guess, then through inquiry and making sense through group consensus, can make an accurate data informed prediction.
Students are confronted with a scenario of a student who is texting …
Students are confronted with a scenario of a student who is texting and driving in the school parking lot and they are tasked to determine the effect of various parameters to see if a student will collide with a pedestrian. Students must begin by breaking the scenario down into more manageable parts to determine what must be studied about the situation. Through a series of labs and activities, students learn how to model and predict situations with constant velocity and acceleration. Then, coding a spreadsheet, students model the complex situation of a texting driver, reacting, and braking during a potentially hazardous situation to create an evidence-based argument.
In order to contextualize the Energy unit, students are tasked to engineer …
In order to contextualize the Energy unit, students are tasked to engineer a bungee cord that will optimize the enjoyment of a doll’s bungee jump. To do this, students first develop the mathematical patterns through inquiry on gravitational energy, kinetic energy, and elastic energy. Once the patterns have been established, students further build on their spreadsheet coding skills, in order to use computational thinking to create a program that will help predict the length of bungee cord necessary for a variety of situations.
This lesson combines the science standards for force and motion with an …
This lesson combines the science standards for force and motion with an engineering activity. Students will design a car from cardboard straws. Coffee stirs tape, balloon, and bottle lids. ( students can choose which types of wheels). Students will race the cars with classmates to determine which is the fastest.
A complete model for describing 1-D accelerated motion (descriptive, motion maps, graphs …
A complete model for describing 1-D accelerated motion (descriptive, motion maps, graphs and kinematic equations). Begins with a paradigm lab of motion on an incline. The lab utilizes Vernier Logger Pro motion detectors the way I implement it, but can be done with other methods of data collection.
In this activity, students construct adding slide rules, scaled with linear calibrations …
In this activity, students construct adding slide rules, scaled with linear calibrations like ordinary rulers. Students learn to move these scales relative to each other in ways that add and subtract distances, thus calculating sums and differences. This is Activity A1 in the "Far Out Math" educator's guide. Lessons within the guide include activities in which students measure, compare quantities as orders of magnitude, use scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, the GLAST mission was renamed Fermi, for the physicist Enrico Fermi.
This astronomy program is designed for middle school children in out-of-school-time settings. …
This astronomy program is designed for middle school children in out-of-school-time settings. The program explores basic astronomy concepts (like invisible light, telescopes) and focuses on the universe outside the solar system (stars, galaxies, black holes). The program is structured for use in a variety of settings, including astronomy days, summer camps, or year-long afterschool programs. Although session activities build concepts sequentially, each session activity is designed to be freestanding as not all participants may attend every session. A manual provides background information and descriptions of how to conduct each activity. A companion website provides additional information and resources for the program leader.
This is a book containing over 200 problems spanning over 70 specific …
This is a book containing over 200 problems spanning over 70 specific topic areas covered in a typical Algebra II course. Learners can encounter a selection of application problems featuring astronomy, earth science and space exploration, often with more than one example in a specific category. Learners will use mathematics to explore science topics related to a wide variety of NASA science and space exploration endeavors. Each problem or problem set is introduced with a brief paragraph about the underlying science, written in a simplified, non-technical jargon where possible. Problems are often presented as a multi-step or multi-part activities. This book can be found on the Space Math@NASA website.
In this informational text, elementary school readers learn about the difference between …
In this informational text, elementary school readers learn about the difference between weather and climate and about components of the climate system. The text can be used to practice visualizing and other comprehension strategies. Available in K-2 and 3-5 grade bands and as an illustrated book as well as a text document, the story appears in the online magazine Beyond Weather and the Water Cycle.
Traditionally, spectral images are two dimensional, and related to text. This kinesthetic …
Traditionally, spectral images are two dimensional, and related to text. This kinesthetic activity has groups of students position themselves along a printed spectrum to make spectral patterns and model various elements. Includes photos, teachers notes and instructions, related resources (e.g., color pdf of a visible light spectra image that can be projected onto a white board or wall to do the activity), and alternative suggestions.
This experimental activity is designed to develop basic understanding of the relationship …
This experimental activity is designed to develop basic understanding of the relationship between the angle of light rays and the area over which the light rays are distributed, and the potential to affect changes in the temperature of materials. Resources needed to conduct this activity include a flashlight, cardboard, protractor and ruler. The resource includes background information, a pre-activity inquiry exploration for students, teaching tips and questions to guide student discussion. This is chapter 4 of Meteorology: An Educator's Resource for Inquiry-Based Learning for Grades 5-9. The guide includes a discussion of learning science, the use of inquiry in the classroom, instructions for making simple weather instruments, and more than 20 weather investigations ranging from teacher-centered to guided and open inquiry investigations.
This activity, which centers on Antarctica, challenges students to research and create …
This activity, which centers on Antarctica, challenges students to research and create the answers and questions for a game of classroom Jeopardy. The printable six-page handout includes a series of inquiry-based questions to get students thinking about Antarctica and guidelines for conducting additional research, illustrated activity directions and a worksheet that helps students craft their Jeopardy-style answers and questions.
This article reprints and links to informational text about the adaptations that …
This article reprints and links to informational text about the adaptations that allow mammals and fish to survive in polar oceans. Versions are available for students in grades K-1, 2-3 and 4-5. Related science and literacy activities are included.
In this activity, students use their knowledge of levers to compete against …
In this activity, students use their knowledge of levers to compete against another student in a simple game. Students will add wooden blocks or similar objects to a tray balanced on a pivot. By competing to keep the tray level, students will learn about the physics of levers.
This experimental activity is designed to develop a basic understanding of the …
This experimental activity is designed to develop a basic understanding of the interrelationship between temperature and pressure and the structure of a device made to examine this relationship. Resources needed to conduct this activity include two canning jars, two large rubber balloons, a heat lamp or lamp with 150 watt bulb, and access to freezer or water and ice. The resource includes background information, teaching tips and questions to guide student discussion. This is chapter 5 of Meteorology: An Educator's Resource for Inquiry-Based Learning for Grades 5-9. The guide includes a discussion of learning science, the use of inquiry in the classroom, instructions for making simple weather instruments, and more than 20 weather investigations ranging from teacher-centered to guided and open inquiry investigations.
In this activity, students construct base-two slide rules that add and subtract …
In this activity, students construct base-two slide rules that add and subtract base-2 exponents (log distances), in order to multiply and divide corresponding powers of two. Students use these slide rules to generate both log and antilog equations, learning to translate one in terms of the other. This is activity C1 in the "Far Out Math" educator's guide. Lessons in the guide include activities in which students measure,compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi.
The purpose of this resource is to quantitatively evaluate the accuracy of …
The purpose of this resource is to quantitatively evaluate the accuracy of a classification system. Students sort birds into three possible classes based on each bird's beak: carnivores, herbivores, and omnivores. Students compare their answers with a given set of validation data.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.