Updating search results...

# 28 Results

View
Selected filters:
• probability
Rating
0.0 stars

Students create their own spinners and examine the outcomes given a specified number of spins in this student interactive, from Illuminations. Students learn that experimental probabilities differ according to the characteristics of the model. Students can also discuss how does the experimental probability compare with the theoretical probability?

Subject:
Mathematics
Statistics and Probability
Material Type:
Activity/Lab
Interactive
Provider:
National Council of Teachers of Mathematics
Author:
Illuminations
02/26/2019
Rating
0.0 stars

The Advanced Data Grapher can be used to analyze data with box plots, bubble graphs, scatterplots, histograms, and stem-and-leaf plots. You can enter multiple rows and columns of data, select which set(s) to display in a graph, and choose the type of representation.

Subject:
Math 1
Mathematics
Material Type:
Interactive
Provider:
NCTM Illuminations Resources for Teaching Math
Author:
NCTM Illuminations
02/26/2019
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Submitted as part of the California Learning Resource Network (CLRN) Phase 3 Digital Textbook Initiative (CA DTI3), CK-12 Advanced Probability and Statistics introduces students to basic topics in statistics and probability but finishes with the rigorous topics an advanced placement course requires. Includes visualizations of data, introduction to probability, discrete probability distribution, normal distribution, planning and conducting a study, sampling distributions, hypothesis testing, regression and correlation, Chi-Square, analysis of variance, and non-parametric statistics.

Subject:
Mathematics
Material Type:
Textbook
Provider:
CK-12 Foundation
Provider Set:
CK-12 FlexBook
Author:
Almukkahal, Raja
09/14/2010
Unrestricted Use
CC BY
Rating
0.0 stars

This textbook covers Algebra II and Trigonometry topics with chapters on equations and inequalities, linear equations and functions, systems of linear equations and inequalities, matrices, quadratic functions and more.

Subject:
Mathematics
Material Type:
Textbook
Provider:
CK-12 Foundation
Provider Set:
CK-12 FlexBook
12/06/2018
Rating
0.0 stars

This is an interactive lesson plan about probability with a series of questions and explanations and videos.

Subject:
Mathematics
Material Type:
Lesson Plan
Provider:
PBS
Author:
WOUB Digital
02/26/2019
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Grade 7 Module 5: Statistics and Probability. Contains 23 lessons.

Subject:
Mathematics
Material Type:
Module
Provider:
EMBARC.Online
08/13/2019
Unrestricted Use
CC BY
Rating
0.0 stars

Working with Buttons is fun.  Students work hard when given tasks like this.  It gives them clear learning goals and gives them a product to display showing that they completed their work.

Subject:
Mathematics
Material Type:
Activity/Lab
Author:
George (Tommy) Jones
06/18/2020
Rating
0.0 stars

The activity and two discussions that make up this lesson introduce ideas that are the basis of probability theory. By using everyday experiences and intuitive understanding, this lesson gives students a gradual introduction to probability.

Subject:
Mathematics
Material Type:
Activity/Lab
Lesson Plan
Provider:
Shodor Education Foundation
Author:
The Shodor Education Foundation
02/26/2019
Unrestricted Use
CC BY
Rating
0.0 stars

This is a project that follows the PBL framework and was used to help students master the fundamentals of probability, specifically the laws of probability (NC.M2.S-CP.1 to 8). Note that the project was designed and delivered per the North Carolina Math 2 curriculum and it can be customized to meet your own specific curriculum needs and resources.

Subject:
Math 2
Mathematics
Material Type:
Activity/Lab
Assessment
Case Study
Data Set
Demonstration
Formative Assessment
Self Assessment
Author:
Ben Owens
07/23/2019
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Four full-year digital course, built from the ground up and fully-aligned to the Common Core State Standards, for 7th grade Mathematics. Created using research-based approaches to teaching and learning, the Open Access Common Core Course for Mathematics is designed with student-centered learning in mind, including activities for students to develop valuable 21st century skills and academic mindset.

Subject:
Mathematics
Material Type:
Full Course
Provider:
Pearson
11/02/2020
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Samples and ProbabilityType of Unit: ConceptualPrior KnowledgeStudents should be able to:Understand the concept of a ratio.Write ratios as percents.Describe data using measures of center.Display and interpret data in dot plots, histograms, and box plots.Lesson FlowStudents begin to think about probability by considering the relative likelihood of familiar events on the continuum between impossible and certain. Students begin to formalize this understanding of probability. They are introduced to the concept of probability as a measure of likelihood, and how to calculate probability of equally likely events using a ratio. The terms (impossible, certain, etc.) are given numerical values. Next, students compare expected results to actual results by calculating the probability of an event and conducting an experiment. Students explore the probability of outcomes that are not equally likely. They collect data to estimate the experimental probabilities. They use ratio and proportion to predict results for a large number of trials. Students learn about compound events. They use tree diagrams, tables, and systematic lists as tools to find the sample space. They determine the theoretical probability of first independent, and then dependent events. In Lesson 10 students identify a question to investigate for a unit project and submit a proposal. They then complete a Self Check. In Lesson 11, students review the results of the Self Check, solve a related problem, and take a Quiz.Students are introduced to the concept of sampling as a method of determining characteristics of a population. They consider how a sample can be random or biased, and think about methods for randomly sampling a population to ensure that it is representative. In Lesson 13, students collect and analyze data for their unit project. Students begin to apply their knowledge of statistics learned in sixth grade. They determine the typical class score from a sample of the population, and reason about the representativeness of the sample. Then, students begin to develop intuition about appropriate sample size by conducting an experiment. They compare different sample sizes, and decide whether increasing the sample size improves the results. In Lesson 16 and Lesson 17, students compare two data sets using any tools they wish. Students will be reminded of Mean Average Deviation (MAD), which will be a useful tool in this situation. Students complete another Self Check, review the results of their Self Check, and solve additional problems. The unit ends with three days for students to work on Gallery problems, possibly using one of the days to complete their project or get help on their project if needed, two days for students to present their unit projects to the class, and one day for the End of Unit Assessment.

Subject:
Mathematics
Statistics and Probability
Provider:
Pearson
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students begin to formalize their understanding of probability. They are introduced to the concept of probability as a measure of likelihood and how to calculate probability as a ratio. The terms discussed (impossible, certain, etc.) in Lesson 1 are given numerical values.Key ConceptsStudents will think of probability as a ratio; it can be written as a fraction, decimal, or a percent ranging from 0 to 1.Students will think about ratio and proportion to predict results.Goals and Learning ObjectivesDefine probability as a measure of likelihood and the ratio of favorable outcomes to the total number of outcomes for an event.Predict results based on theoretical probability using ratio and proportion.

Subject:
Statistics and Probability
Material Type:
Lesson Plan
Author:
Pearson
11/02/2020
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students extend their understanding of compound events. They will compare experimental results to predicted results by calculating the probability of an event, then conducting an experiment.Key ConceptsStudents apply their understanding of compound events to actual experiments.Students will see there is variability in actual results.Goals and Learning ObjectivesContinue to explore compound independent events.Compare theoretical probability to experimental probability.

Subject:
Statistics and Probability
Material Type:
Lesson Plan
Author:
Pearson
11/02/2020
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students begin learning about compound events by considering independent events. They will consider everyday objects with known probabilities. Students will represent sample spaces using lists, tables, and tree diagrams in order to calculate the probability of certain events.Key ConceptsCompound events are introduced in this lesson, building upon what students have learned about determining sample space and probabilities of single events.Terms introduced are:multistage experiment: an experiment in which more than one action is performedcompound events: the combined results of multistage experimentsindependent events: compound events in which the outcome of one does not affect the outcome of the otherGoals and Learning ObjectivesLearn about compound events and sample spaces.Use different tools to find the sample space (tree diagrams, tables, lists) of a compound event.Use ratio and proportion to solve problems.SWD: Go over the mathematical language used throughout the module. Make sure students use that language when discussing problems in this lesson.

Subject:
Mathematics
Statistics and Probability
Material Type:
Lesson Plan
Author:
Pearson
11/02/2020
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students will continue to apply their understanding of compound independent events. They will calculate probabilities and represent sample spaces with visual representations.Key ConceptsStudents continue to solve problems with compound events. The formula for calculating the probability of independent events is introduced:P(A and B) = P(A) ⋅ P(B)Goals and Learning ObjectivesDeepen understanding of compound events using lists, tables, and tree diagrams.Learn about the Fundamental Counting Principle.

Subject:
Statistics and Probability
Material Type:
Lesson Plan
Author:
Pearson
11/02/2020
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Gallery OverviewAllow students who have a clear understanding of the content thus far in the unit to work on Gallery problems of their choosing. You can then use this time to provide additional help to students who need review of the unit's concepts or to assist students who may have fallen behind on work.Chance of RainStudents are given the probability that it will rain on two different days and asked to find the chance that it will rain on one of the two days.PenguinsIn an Antarctic penguin colony, 200 penguins are tagged and released. A year later, 100 penguins are captured and 4 of them are tagged. Students determine how many penguins are in the colony.How Many Yellow?Given the total number of balls in a bag and the probability for two colors, students find the number of balls for the third color.How Many Ways to Line Up?Students decide how many different ways they five students can order themselves as they line up for class.Gumballs There are some white gumballs and red gumballs left in a machine. Students find the probability of getting at least one red gumball.New FamilyA married couple wants to have four children. Students find the probability that at least one child will be a girl.Nickel and DimeStudents find the probability for different outcomes when tossing two coins.Four More FlipsStudents determine how many more tails are likely if a coin has already landed on tails twice.Bubble GumThe letters G, U, or M are printed inside bubble gum wrappers in a ratio of 3:2:1. Students use a simulation to find out how much bubble gum to buy to get a 3:2:1 ratio.A Large FamilyIf a family wants to have six children, what is the probability that there will be three boys and three girls? Students use a simulation to model the probability.No TelephoneUsing census data from 1960 and 1990 in two box plots, students compare the percentages of families that had phones.Pulse RateStudents compare two data sets of different sizes: one for students and one for athletes.Golf ScoresStudents are given two sets of golf scores for Rosa and Chen. They are asked to decide who is the better golfer by constructing and comparing box plots.How Much Taller?Given two sets of data about heights, students determine how much taller one group is than the other.Coin Jar Students determine the contents of a coin jar by sampling.Project Work TimeStudents can choose to work on and complete their project or get help if needed.

Subject:
Statistics and Probability
Material Type:
Lesson Plan
Author:
Pearson
11/02/2020
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students continue to extend their understanding of compound events by comparing independent and dependent events. This includes drawing the sample space to understand how the first event does or does not affect the second event. Students will solve problems with dependent compound events.Key ConceptsStudents will learn about the differences between dependent and independent events.Events are independent if the outcome of an event does not influence the outcome of the others.Events are dependent if the outcome of an event does influence the outcome of the others.The difference can be observed by drawing a diagram to represent the sample space. For dependent events, the sample space is smaller.Goals and Learning ObjectivesUnderstand the difference between independent and dependent compound events.Draw diagrams for dependent compound events.Solve compound event problems.

Subject:
Statistics and Probability
Material Type:
Lesson Plan
Author:
Pearson
11/02/2020
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students will begin to think about probability by considering how likely it is that their house will be struck by lightning. They will consider the relative likelihood of familiar events (e.g., outdoor temperature, test scores) on the continuum between impossible and certain. Students will discuss where on the continuum "likely," "unlikely," and "equally likely as unlikely" are.Key ConceptsAs students begin their study of probability, they look at the likelihood of events. Students have an intuitive sense of likelihood, even if no numbers or ratios are attached to the events. For example, there is clearly a better chance that a specific student will be chosen at random from a class than from the entire school.Goals and Learning ObjectivesThink about the concept of likelihood.Understand that probability is a measure of likelihood.Informally estimate the likelihood of certain events.Begin to think about why one event is more likely than another.SWD: Students with disabilities may need additional support seeing the relationships among problems and strategies. Throughout this unit, keep anchor charts available and visible to assist them in making connections and working toward mastery. Provide explicit think alouds comparing strategies and making connections. In addition, ask probing questions to get students to articulate how a peer solved the problem or how one strategy or visual representation is connected or related to another.

Subject:
Mathematics
Statistics and Probability
Material Type:
Lesson Plan
Author:
Pearson
11/02/2020
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students begin to formalize their understanding of probability. They are introduced to the concept of probability as a measure of likelihood and how to calculate probability as a ratio. The terms discussed (impossible, certain, etc.) in Lesson 1 are given numerical values.Key ConceptsStudents will think of probability as a ratio; it can be written as a fraction, decimal, or a percent ranging from 0 to 1.Students will think about ratio and proportion to predict results.Goals and Learning ObjectivesDefine probability as a measure of likelihood and the ratio of favorable outcomes to the total number of outcomes for an event.Predict results based on theoretical probability using ratio and proportion.

Subject:
Statistics and Probability
Material Type:
Lesson Plan
Author:
KIMBERLY INMAN
11/05/2020
Unrestricted Use
CC BY
Rating
0.0 stars

The Mathematics Vision Project (MVP) was created as a resource for teachers to implement the Common Core State Standards (CCSS) using a task-based approach that leads to skill and efficiency in mathematics by first developing understanding. The MVP approach develops the Standards of Mathematical Practice through experiential learning. Students engage in mathematical problem solving, guided by skilled teachers, in order to achieve mathematical proficiency: conceptual understanding, procedural fluency, strategic competence, adaptive reasoning, and productive disposition. The MVP authors created a curriculum where students do not learn solely by either “internalizing what a teacher or book says or, on the other hand, solely by inventing mathematics on their own.”
The MVP classroom experience begins by confronting students with an engaging problem and allows them to grapple with solving it. As students’ ideas emerge, take form, and are shared, the teacher deliberately orchestrates the student discussions and explorations toward a focused math goal. Students justify their own thinking while clarifying, describing, comparing, and questioning the thinking of others leading to refined thinking and mathematical fluency. What begin as ideas become concepts that lead to formal, traditional math definitions and properties. Strategies become algorithms that lead to procedures supporting efficiency and consistency. Representations become tools of communication which are formalized as mathematical models. Students learn by doing mathematics.

Subject:
Math 1
Math 2
Math 3
Mathematics
Material Type:
Curriculum
Lesson Plan
Student Guide
Textbook
Author:
Mathematics Vision Project