In this activity, students will make go-carts and measure the speed, then …
In this activity, students will make go-carts and measure the speed, then change different factors of the experiment and see how the speed changes. In day 1, students will design and build a cart based on a specified set of materials, and then complete several trials to test the cart by rolling it down a ramp. Through discussion and journaling students will share their designs and compare the speeds of carts. In day 2, students will experiment with ways to increase or decrease the speed of their cart.
This assessment resource checks for student understanding of how graphs illustrate motion …
This assessment resource checks for student understanding of how graphs illustrate motion and show a change in position over time. This assessment is meant to be used after students complete the interactive module found at http://smartgraphs-activities.concord.org/activities/194-motion-toward-and-away/student_preview
In this interactive module, students explore how motion in two opposite directions …
In this interactive module, students explore how motion in two opposite directions appear on a position-time graph. Note: This activity requires use of a motion sensor.
The focus of this unit is to introduce the concepts of force …
The focus of this unit is to introduce the concepts of force and motion. Specifically this unit will address the forces of push, pull, gravity, and work. It also introduces students to the concepts of friction and slope. The unit begins with an introduction to the scientific method and addresses the differences between scientists and engineers. Students will be both scientists and engineers while completing this unit.
In this activity, students will observe marbles rolling down a ramp and …
In this activity, students will observe marbles rolling down a ramp and identify variables that could cause the marble to roll faster or farther. They will then design a procedure to test how the height of the ramp affects the motion of the marble and collect, record, and analyze data.
This is the educator's guide for a set of activities that teach …
This is the educator's guide for a set of activities that teach students about humans' endeavors to return to the moon. The emphasis is for students to understand that engineers must "imagine and plan" before they begin to build and experiment. Each activity features objectives, a list of materials, educator information, procedures, and student worksheets. Students should work in teams to complete the activities. Note: Activities do not align to all objectives that are listed; specific activities align to specific objectives.
Students will be grouped into teams. Then each team will create a …
Students will be grouped into teams. Then each team will create a pathway for their Hexbug to travel. The Hexbug path should be 5 feet from beginning to end and must include two curves, a hill, one bridge and one tunnel. The Hexbug must travel from the beginning to the end without any assistance. Each team will have a timer and will have 20 minutes to design the quickest path they can for their Hexbug. After the first race teams will have 5 minutes to talk about changes they can make and 5 minutes to make the changes. There will be one final race to see if a different team is able to win.
Students alter gliders in controlled experiments to simulate how certain characteristics affect …
Students alter gliders in controlled experiments to simulate how certain characteristics affect pterosaur's flight. Students will test the flight of two gliders with the objective to observe how adding a change like a head crest affects their motion.
In this lesson, students will predict which will land first, a marble …
In this lesson, students will predict which will land first, a marble or a pea, when dropped from the same height. Students will then participate in a class discussion. Next, students work in small groups to design an experiment to test their ideas about the effect the height of a ramp will have on how far an object will travel. Students will record the data from their investigations and present their results to the class, also participating in a culminating class discussion. A student recording sheet is included.
In this STEM lesson, students will use the engineering design process to …
In this STEM lesson, students will use the engineering design process to design and construct rocket-powered racing cars with which to investigate Newton's Laws of Motion. Each student will construct his or her own car from food trays, and will use inflated balloons to power the car (thrust). Students conduct three trials and measure the distance traveled by the cars. Between trials, students modify their designs to improve performance and solve any "mechanical" problems that crop up. At the conclusion of the activity, students submit a report on their racer design and how it performed in the trials.
In this lesson, students design roller ball race tracks from recycled cardboard …
In this lesson, students design roller ball race tracks from recycled cardboard boxes and construction paper. Students will experiment with balls of various sizes and weights, different surfaces and ramp levels.
In this lesson, students learn about vocabulary such as gravity, force and …
In this lesson, students learn about vocabulary such as gravity, force and speed, and then apply those meanings as they participate in small cooperative groups to test different variables such as weight, speed and elevation. Students record and compare such data as time it takes for toy cars to roll down a ramp, the distance a toy car travels and they determine the averages for time and distance.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.